Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains several tools to treat imaging flow cytometry data from ImageStream® and FlowSight® cytometers ('Amnis® Cytek®'). Provides an easy and simple way to read and write .fcs, .rif, .cif and .daf files. Information such as masks, features, regions and populations set within these files can be retrieved for each single cell. In addition, raw data such as images stored can also be accessed. Users, may hopefully increase their productivity thanks to dedicated functions to extract, visualize, manipulate and export IFC data. Toy data example can be installed through the IFCdata package of approximately 32 MB, which is available in a drat repository <https://gitdemont.github.io/IFCdata/>. See file COPYRIGHTS and file AUTHORS for a list of copyright holders and authors.
Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.
Multiple Imputation for Informative Censoring. This package implements two methods. Gamma Imputation described in <DOI:10.1002/sim.6274> and Risk Score Imputation described in <DOI:10.1002/sim.3480>.
This package contains data on Post-Secondary Institution Statistics in 2020 <https://nces.ed.gov/ipeds/use-the-data>. The package allows easy access to a wide variety of information regarding Post-secondary Institutions, its students, faculty, and their demographics, financial aid, educational and recreational offerings, and completions. This package can be used by students, college counselors, or involved parents interested in pursuing higher education, considering their options, and securing admission into their school of choice.
This package provides a GUI designed to support the analysis of financial-economic time series data.
Three methods for Individual Tree Crowns (ITCs) delineation on remote sensing data: one is based on LiDAR data in x,y,z format and one on imagery data in raster format.
Theories are one of the most important tools of science. Although psychologists discussed problems of theory in their discipline for a long time, weak theories are still widespread in most subfields. One possible reason for this is that psychologists lack the tools to systematically assess the quality of their theories. Previously a computational model for formal theory evaluation based on the concept of explanatory coherence was developed (Thagard, 1989, <doi:10.1017/S0140525X00057046>). However, there are possible improvements to this model and it is not available in software that psychologists typically use. Therefore, a new implementation of explanatory coherence based on the Ising model is available in this R-package.
This package provides tools to extract information from the Intergovernmental Organizations ('IGO') Database , version 3, provided by the Correlates of War Project <https://correlatesofwar.org/>. See also Pevehouse, J. C. et al. (2020). Version 3 includes information from 1815 to 2014.
Generates three inter-related genomic datasets: methylation, gene expression and protein expression having user specified cluster patterns. The simulation utilizes the realistic inter- and intra- relationships from real DNA methylation, mRNA expression and protein expression data from the TCGA ovarian cancer study, Chalise (2016) <doi:10.1016/j.cmpb.2016.02.011>.
This package provides a set of functions to run simple and composite box-models to describe the dynamic or static distribution of stable isotopes in open or closed systems. The package also allows the sweeping of many parameters in both static and dynamic conditions. The mathematical models used in this package are derived from Albarede, 1995, Introduction to Geochemical Modelling, Cambridge University Press, Cambridge <doi:10.1017/CBO9780511622960>.
Collection of tools to automate the processing of data collected though the IDEA4 method (see Zahm et al. (2018) <doi:10.1051/cagri/2019004> ). Starting from the original data collecting files this packages provides functions to compute IDEA indicators, draw modern and aesthetic plots, and produce a wide range of reporting materials.
This package contains functions for evaluating & comparing the performance of Binary classification models. Functions can be called either statically or interactively (as Shiny Apps).
Generates efficient designs for discrete choice experiments based on the multinomial logit model, and individually adapted designs for the mixed multinomial logit model. The generated designs can be presented on screen and choice data can be gathered using a shiny application. Traets F, Sanchez G, and Vandebroek M (2020) <doi:10.18637/jss.v096.i03>.
This package provides methods for estimating causal effects in the presence of interference described in B. Saul and M. Hugdens (2017) <doi:10.18637/jss.v082.i02>. Currently it implements the inverse-probability weighted (IPW) estimators proposed by E.J. Tchetgen Tchetgen and T.J. Vanderweele (2012) <doi:10.1177/0962280210386779>.
Estimate confidence intervals for mean, proportion, mean difference for unpaired and paired samples and proportion difference. Plot the confidence intervals. Generate documents explaining the statistical result step by step.
Web scraping the <https://www.dallasfed.org> for up-to-date data on international house prices and exuberance indicators. Download data in tidy format.
This package provides a dataframe validation framework for package builders who use dataframes as function parameters. It performs checks on column names, coerces data-types, and checks grouping to make sure user inputs conform to a specification provided by the package author. It provides a mechanism for package authors to automatically document supported dataframe inputs and selectively dispatch to functions depending on the format of a dataframe much like S3 does for classes. It also contains some developer tools to make working with and documenting dataframe specifications easier. It helps package developers to improve their documentation and simplifies parameter validation where dataframes are used as function parameters.
This package provides a runtime type system, allowing users to define and implement interfaces, enums, typed data.frame/data.table, as well as typed functions. This package enables stricter type checking and validation, improving code structure, robustness and reliability.
This package provides a key-value store data structure. The keys are integers and the values can be any R object. This is like a list but indexed by a set of integers, not necessarily contiguous and possibly negative. The implementation uses a R6 class. These containers are not faster than lists but their usage can be more convenient for certain situations.
This package provides a collection of several functions related to construction and analysis of incomplete split-plot designs. The package contains functions to obtain and analyze incomplete split-plot designs for three kinds of situations namely (i) when blocks are complete with respect to main plot treatments and main plots are incomplete with respect to subplot treatments, (ii) when blocks are incomplete with respect to main plot treatments and main plots are complete with respect to subplot treatments and (iii) when blocks are incomplete with respect to main plot treatments and main plots are incomplete with respect to subplot treatments.
Implementation of a KL-based scoring rule to assess the quality of different missing value imputations in the broad sense as introduced in Michel et al. (2021) <arXiv:2106.03742>.
Used for analyzing immune responses and predicting vaccine efficacy using machine learning and advanced data processing techniques. Immunaut integrates both unsupervised and supervised learning methods, managing outliers and capturing immune response variability. It performs multiple rounds of predictive model testing to identify robust immunogenicity signatures that can predict vaccine responsiveness. The platform is designed to handle high-dimensional immune data, enabling researchers to uncover immune predictors and refine personalized vaccination strategies across diverse populations.
This package provides a suite of convenient tools for social network analysis geared toward students, entry-level users, and non-expert practitioners. â ideanetâ features unique functions for the processing and measurement of sociocentric and egocentric network data. These functions automatically generate node- and system-level measures commonly used in the analysis of these types of networks. Outputs from these functions maximize the ability of novice users to employ network measurements in further analyses while making all users less prone to common data analytic errors. Additionally, â ideanetâ features an R Shiny graphic user interface that allows novices to explore network data with minimal need for coding.
Quick indexation of any type of vector or of any combination of those. Indexation turns a vector into an integer vector going from 1 to the number of unique elements. Indexes are important building blocks for many algorithms. The method is described at <https://github.com/lrberge/indexthis/>.