Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a suite of functions to use with regression models, including summaries, residual plots, and factor comparisons. Used as part of the Model Fitting module of iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions.
Let us consider a sample of patients who can suffer from several diseases simultaneously, in a given set of diseases. The goal of the implemented algorithm is to estimate the individual average cost of each disease, starting from the global health costs available for each patient.
Most existing approaches for network reconstruction can only infer an overall network and, also, fail to capture a complete set of network properties. To address these issues, a new model has been developed, which converts static data into their dynamic form. idopNetwork is an R interface to this model, it can inferring informative, dynamic, omnidirectional and personalized networks. For more information on functional clustering part, see Kim et al. (2008) <doi:10.1534/genetics.108.093690>, Wang et al. (2011) <doi:10.1093/bib/bbr032>. For more information on our model, see Chen et al. (2019) <doi:10.1038/s41540-019-0116-1>, and Cao et al. (2022) <doi:10.1080/19490976.2022.2106103>.
This package implements the procedures suggested in Esarey and Sumner (2017) <http://justinesarey.com/interaction-overconfidence.pdf> for controlling the false discovery rate when constructing marginal effects plots for models with interaction terms.
Time parceling method and Bayesian variability modeling methods for modeling within individual variability indicators as predictors.For more details, see <https://github.com/xliu12/IIVpredicitor>.
The implement of integrative analysis methods based on a two-part penalization, which realizes dimension reduction analysis and mining the heterogeneity and association of multiple studies with compatible designs. The software package provides the integrative analysis methods including integrative sparse principal component analysis (Fang et al., 2018), integrative sparse partial least squares (Liang et al., 2021) and integrative sparse canonical correlation analysis, as well as corresponding individual analysis and meta-analysis versions. References: (1) Fang, K., Fan, X., Zhang, Q., and Ma, S. (2018). Integrative sparse principal component analysis. Journal of Multivariate Analysis, <doi:10.1016/j.jmva.2018.02.002>. (2) Liang, W., Ma, S., Zhang, Q., and Zhu, T. (2021). Integrative sparse partial least squares. Statistics in Medicine, <doi:10.1002/sim.8900>.
Manipulate integer-bounded intervals including finding overlaps, piling and merging.
Estimates the density of a spatially distributed animal population sampled with an array of passive detectors, such as traps. Models incorporating distance-dependent detection are fitted by simulation and inverse prediction as proposed by Efford (2004) <doi:10.1111/j.0030-1299.2004.13043.x>.
This package provides tools for passing messages between R processes. Shiny examples are provided showing how to perform useful tasks such as: updating reactive values from within a future, progress bars for long running async tasks, and interrupting async tasks based on user input.
This package performs Goodness of Fit for regression models using Integrated Regression method. Works for several different fitting techniques.
R interface to access the web services of the ICES Stock Database <https://sd.ices.dk>.
An implementation of the induced smoothing (IS) idea to lasso regularization models to allow estimation and inference on the model coefficients (currently hypothesis testing only). Linear, logistic, Poisson and gamma regressions with several link functions are implemented. The algorithm is described in the original paper; see <doi:10.1177/0962280219842890> and discussed in a tutorial <doi:10.13140/RG.2.2.16360.11521>.
Simulation of segments shared identical-by-descent (IBD) by pedigree members. Using sex specific recombination rates along the human genome (Halldorsson et al. (2019) <doi:10.1126/science.aau1043>), phased chromosomes are simulated for all pedigree members. Applications include calculation of realised relatedness coefficients and IBD segment distributions. ibdsim2 is part of the pedsuite collection of packages for pedigree analysis. A detailed presentation of the pedsuite', including a separate chapter on ibdsim2', is available in the book Pedigree analysis in R (Vigeland, 2021, ISBN:9780128244302). A Shiny app for visualising and comparing IBD distributions is available at <https://magnusdv.shinyapps.io/ibdsim2-shiny/>.
This package infers a topology of relationships between different datasets, such as multi-omics and phenotypic data recorded on the same samples. We based this methodology on the RV coefficient (Robert & Escoufier, 1976, <doi:10.2307/2347233>), a measure of matrix correlation, which we have extended for partial matrix correlations and binary data (Aben et al., 2018, <doi:10.1101/293993>).
Carry out comparative authorship analysis of disputed and undisputed texts within the Likelihood Ratio Framework for expressing evidence in forensic science. This package contains implementations of well-known algorithms for comparative authorship analysis, such as Smith and Aldridge's (2011) Cosine Delta <doi:10.1080/09296174.2011.533591> or Koppel and Winter's (2014) Impostors Method <doi:10.1002/asi.22954>, as well as functions to measure their performance and to calibrate their outputs into Log-Likelihood Ratios.
This package provides tools for probabilistic taxon assignment with informatic sequence classification trees. See Wilkinson et al (2018) <doi:10.7287/peerj.preprints.26812v1>.
Fit parametric models for time-to-event data that show an initial incubation period', i.e., a variable delay phase where the hazard is zero. The delayed Weibull distribution serves as foundational data model. The specific method of MPSE (maximum product of spacings estimation) and MLE-based methods are used for parameter estimation. Bootstrap confidence intervals for parameters and significance tests in a two group setting are provided.
This R package implements methods for estimation and inference under Incomplete Block Designs and Balanced Incomplete Block Designs within a design-based finite-population framework. Based on Koo and Pashley (2024) <arXiv:2405.19312>, it includes block-level estimators and extends to unit-level effects using Horvitz-Thompson and Hájek estimators. The package also provides asymptotic confidence intervals to support valid statistical inference.
This package provides functions to download and parse information from INEGI (Official Mexican statistics agency). To learn more about the API, see <https://www.inegi.org.mx/servicios/api_indicadores.html>.
Ke, B. S., Chiang, A. J., & Chang, Y. C. I. (2018) <doi:10.1080/10543406.2017.1377728> provide two theoretical methods (influence function and local influence) based on the area under the receiver operating characteristic curve (AUC) to quantify the numerical impact of each observation to the overall AUC. Alternative graphical tools, cumulative lift charts, are proposed to reveal the existences and approximate locations of those influential observations through data visualization.
This package provides a set of tools for processing and analyzing in vitro toxicokinetic measurements in a standardized and reproducible pipeline. The package was developed to perform frequentist and Bayesian estimation on a variety of in vitro toxicokinetic measurements including -- but not limited to -- chemical fraction unbound in the presence of plasma (f_up), intrinsic hepatic clearance (Clint, uL/min/million hepatocytes), and membrane permeability for oral absorption (Caco2). The methods provided by the package were described in Wambaugh et al. (2019) <doi:10.1093/toxsci/kfz205>.
This package provides tools to assess model fit and identify misfitting items for Rasch models (RM) and partial credit models (PCM). Included are item fit statistics, item characteristic curves, item-restscore association, conditional likelihood ratio tests, assessment of measurement error, estimates of the reliability and test targeting as described in Christensen et al. (Eds.) (2013, ISBN:978-1-84821-222-0).
This package produces a publication-ready table that includes all effect estimates necessary for full reporting effect modification and interaction analysis as recommended by Knol and Vanderweele (2012) [<doi:10.1093/ije/dyr218>]. It also estimates confidence interval for the trio of additive interaction measures using the delta method (see Hosmer and Lemeshow (1992), [<doi:10.1097/00001648-199209000-00012>]), variance recovery method (see Zou (2008), [<doi:10.1093/aje/kwn104>]), or percentile bootstrapping (see Assmann et al. (1996), [<doi:10.1097/00001648-199605000-00012>]).
Interface to the OpenGWAS database API <https://api.opengwas.io/api/>. Includes a wrapper to make generic calls to the API, plus convenience functions for specific queries.