Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implement a multivariate analysis of the impact of items to identify a bias in the questionnaire validation of Likert-type scale variables. The items requires considering a null value (category doesn't have tendency). Offering frequency, importance and impact of the items.
This package contains data sets, programmes and illustrations discussed in the book, "Introduction to Probability, Statistics and R: Foundations for Data-Based Sciences." Sahu (2024, isbn:9783031378645) describes the methods in detail.
An implementation of the iterative bootstrap procedure of Kuk (1995) <doi:10.1111/j.2517-6161.1995.tb02035.x> to correct the estimation bias of a fitted model object. This procedure has better bias correction properties than the bootstrap bias correction technique.
It provides a generic set of tools for initializing a synthetic population with each individual in specific disease states, and making transitions between those disease states according to the rates calculated on each timestep. The new version 1.0.0 has C++ code integration to make the functions run faster. It has also a higher level function to actually run the transitions for the number of timesteps that users specify. Additional functions will follow for changing attributes on demographic, health belief and movement.
This package provides a system for submitting multiple IP information queries to IP2Location.io'â s IP Geolocation API and storing the resulting data in a dataframe. You provide a vector of IP addresses and your IP2Location.io API key. The package returns a dataframe with one row per IP address and a column for each available data field (data fields not included in your API plan will contain NAs). This is the second submission of the package to CRAN.
Improve optical character recognition by binarizing images. The package focuses primarily on local adaptive thresholding algorithms. In English, this means that it has the ability to turn a color or gray scale image into a black and white image. This is particularly useful as a preprocessing step for optical character recognition or handwritten text recognition.
Network functionalities specialized for data generated from input-output tables.
Collection of functions for IO Psychologists.
Fit a full or subsampling bagging survival tree on a mixture of population (susceptible and nonsusceptible) using either a pseudo R2 criterion or an adjusted Logrank criterion. The predictor is evaluated using the Out Of Bag Integrated Brier Score (IBS) and several scores of importance are computed for variable selection. The thresholds values for variable selection are computed using a nonparametric permutation test. See Cyprien Mbogning and Philippe Broet (2016)<doi:10.1186/s12859-016-1090-x> for an overview about the methods implemented in this package.
This package provides a systematic framework for integrating multiple modalities of assays profiled on the same set of samples. The goal is to identify genes that are altered in cancer either marginally or consistently across different assays. The heterogeneity among different platforms and different samples are automatically adjusted so that the overall alteration magnitude can be accurately inferred. See Tong and Coombes (2012) <doi:10.1093/bioinformatics/bts561>.
This package contains tools for instrumental variables estimation. Currently, non-parametric bounds, two-stage estimation and G-estimation are implemented. Balke, A. and Pearl, J. (1997) <doi:10.2307/2965583>, Vansteelandt S., Bowden J., Babanezhad M., Goetghebeur E. (2011) <doi:10.1214/11-STS360>.
Some basic functions to implement belief functions including: transformation between belief functions using the method introduced by Philippe Smets <arXiv:1304.1122>, evidence combination, evidence discounting, decision-making, and constructing masses. Currently, thirteen combination rules and six decision rules are supported. It can also be used to generate different types of random masses when working on belief combination and conflict management.
Computes bilateral and multilateral index numbers. It has support for many standard bilateral indexes as well as multilateral index number methods such as GEKS, GEKS-Tornqvist (or CCDI), Geary-Khamis and the weighted time product dummy (for details on these methods see Diewert and Fox (2020) <doi:10.1080/07350015.2020.1816176>). It also supports updating of multilateral indexes using several splicing methods.
This package provides convenient access to the German modification of the International Classification of Diagnoses, 10th revision (ICD-10-GM). It provides functionality to aid in the identification, specification and historisation of ICD-10 codes. Its intended use is the analysis of routinely collected data in the context of epidemiology, medical research and health services research. The underlying metadata are released by the German Institute for Medical Documentation and Information <https://www.dimdi.de>, and are redistributed in accordance with their license.
Analysis of the initialization for numerical optimization of real-valued functions, particularly likelihood functions of statistical models. See <https://loelschlaeger.de/ino/> for more details.
An interface to the algorithms of Interpretable AI <https://www.interpretable.ai> from the R programming language. Interpretable AI provides various modules, including Optimal Trees for classification, regression, prescription and survival analysis, Optimal Imputation for missing data imputation and outlier detection, and Optimal Feature Selection for exact sparse regression. The iai package is an open-source project. The Interpretable AI software modules are proprietary products, but free academic and evaluation licenses are available.
This minimalist package is designed to quickly score raw data outputted from an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) <doi:10.1037/0022-3514.74.6.1464>. IAT scores are calculated as specified by Greenwald, Nosek, and Banaji (2003) <doi:10.1037/0022-3514.85.2.197>. Outputted values can be interpreted as effect sizes. The input function consists of three arguments. First, indicate the name of the dataset to be analyzed. This is the only required input. Second, indicate the number of trials in your entire IAT (the default is set to 219, which is typical for most IATs). Last, indicate whether congruent trials (e.g., flowers and pleasant) or incongruent trials (e.g., guns and pleasant) were presented first for this participant (the default is set to congruent). The script will tell you how long it took to run the code, the effect size for the participant, and whether that participant should be excluded based on the criteria outlined by Greenwald et al. (2003). Data files should consist of six columns organized in order as follows: Block (0-6), trial (0-19 for training blocks, 0-39 for test blocks), category (dependent on your IAT), the type of item within that category (dependent on your IAT), a dummy variable indicating whether the participant was correct or incorrect on that trial (0=correct, 1=incorrect), and the participantâ s reaction time (in milliseconds). Three sample datasets are included in this package (labeled IAT', TooFastIAT', and BriefIAT') to practice with.
An implementation of the initial guided analytics for parameter testing and controlband extraction framework. Functions are available for continuous and categorical target variables as well as for generating standardized reports of the conducted analysis. See <https://github.com/stefan-stein/igate> for more information on the technology.
Advanced fuzzy logic based techniques are implemented to compute the similarity among different objects or items. Typically, application areas consist of transforming raw data into the corresponding advanced fuzzy logic representation and determining the similarity between two objects using advanced fuzzy similarity techniques in various fields of research, such as text classification, pattern recognition, software projects, decision-making, medical diagnosis, and market prediction. Functions are designed to compute the membership, non-membership, hesitant-membership, indeterminacy-membership, and refusal-membership for the input matrices. Furthermore, it also includes a large number of advanced fuzzy logic based similarity measure functions to compute the Intuitionistic fuzzy similarity (IFS), Pythagorean fuzzy similarity (PFS), and Spherical fuzzy similarity (SFS) between two objects or items based on their fuzzy relationships. It also includes working examples for each function with sample data sets.
This package provides classes and functions for working with IP (Internet Protocol) addresses and networks, inspired by the Python ipaddress module. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces. It is specifically designed to work well with the tidyverse'.
R interface to access the Vocabularies REST API of the ICES (International Council for the Exploration of the Sea) Vocabularies database <https://vocab.ices.dk/services/>.
This package performs valid statistical inference on predicted data (IPD) using recent methods, where for a subset of the data, the outcomes have been predicted by an algorithm. Provides a wrapper function with specified defaults for the type of model and method to be used for estimation and inference. Further provides methods for tidying and summarizing results. Salerno et al., (2024) <doi:10.48550/arXiv.2410.09665>.
Helps with the thoughtful saving, reading, and management of result files (using rds files). The core functions take a list of parameters that are used to generate a unique hash to save results under. Then, the same parameter list can be used to read those results back in. This is helpful to avoid clunky file naming when running a large number of simulations. Additionally, helper functions are available for compiling a flat file of parameters of saved results, monitoring result usage, and cleaning up unwanted or unused results. For more information, visit the indexr homepage <https://lharris421.github.io/indexr/>.
Download ifo business survey data and more time series from ifo institute <https://www.ifo.de/en/ifo-time-series>.