Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Assists in generating binary clustered data, estimates of Intracluster Correlation coefficient (ICC) for binary response in 16 different methods, and 5 different types of confidence intervals.
Read data from LimeSurvey (<https://www.limesurvey.org/>) in a comfortable way. Heavily inspired by limer (<https://github.com/cloudyr/limer/>), which lacked a few comfort features for me.
Implementation of Tyler, Critchley, Duembgen and Oja's (JRSS B, 2009, <doi:10.1111/j.1467-9868.2009.00706.x>) and Oja, Sirkia and Eriksson's (AJS, 2006, <https://www.ajs.or.at/index.php/ajs/article/view/vol35,%20no2%263%20-%207>) method of two different scatter matrices to obtain an invariant coordinate system or independent components, depending on the underlying assumptions.
The function install_load checks the local R library(ies) to see if the required package(s) is/are installed or not. If the package(s) is/are not installed, then the package(s) will be installed along with the required dependency(ies). This function pulls source or binary packages from the Posit/RStudio-sponsored CRAN mirror. Lastly, the chosen package(s) is/are loaded. The function load_package simply loads the provided package(s). If this package does not fit your needs, then you may want to consider these other R packages: needs', easypackages', pacman', pak', anyLib', and/or librarian'.
This package provides a simplified version of the IDSL.UFA package to calculate isotopic profiles and adduct formulas from molecular formulas with no dependency on other R packages for online tools and educational mass spectrometry courses. The IDSL.SUFA package also provides an ancillary module to process user-defined adduct formulas.
Set of functions to impute missing rare earth data, calculate La and Pr concentrations and Ce anomalies in zircons based on the Chondrite-Onuma and Chondrite-Lattice of Carrasco-Godoy and Campbell (2023) <doi:10.1007/s00410-023-02025-9> and the Logarithmic regression from Zhong et al. (2019) <doi:10.1007/s00710-019-00682-y>.
Quickly score raw data outputted from an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) <doi:10.1037/0022-3514.74.6.1464>. IAT scores are calculated as specified by Greenwald, Nosek, and Banaji (2003) <doi:10.1037/0022-3514.85.2.197>. The output of this function is a data frame that consists of four rows containing the following information: (1) the overall IAT effect size for the participant's dataset, (2) the effect size calculated for odd trials only, (3) the effect size calculated for even trials only, and (4) the proportion of trials with reaction times under 300ms (which is important for exclusion purposes). Items (2) and (3) allow for a measure of the internal consistency of the IAT. Specifically, you can use the subsetted IAT effect sizes for odd and even trials to calculate Cronbach's alpha across participants in the sample. The input function consists of three arguments. First, indicate the name of the dataset to be analyzed. This is the only required input. Second, indicate the number of trials in your entire IAT (the default is set to 220, which is typical for most IATs). Last, indicate whether congruent trials (e.g., flowers and pleasant) or incongruent trials (e.g., guns and pleasant) were presented first for this participant (the default is set to congruent). Data files should consist of six columns organized in order as follows: Block (0-6), trial (0-19 for training blocks, 0-39 for test blocks), category (dependent on your IAT), the type of item within that category (dependent on your IAT), a dummy variable indicating whether the participant was correct or incorrect on that trial (0=correct, 1=incorrect), and the participantâ s reaction time (in milliseconds). A sample dataset (titled sampledata') is included in this package to practice with.
Pre-processing and basic analytical tasks for working with Eurostat's symmetric inputâ output tables, and basic inputâ output economics calculations. Part of rOpenGov <https://ropengov.github.io/> for open source open government initiatives.
This package provides a variational Bayesian approach for fast integrative clustering and feature selection, facilitating the analysis of multi-view, mixed type, high-dimensional datasets with applications in fields like cancer research, genomics, and more.
Calibration and risk-set calibration methods for fitting Cox proportional hazard model when a binary covariate is measured intermittently. Methods include functions to fit calibration models from interval-censored data and modified partial likelihood for the proportional hazard model, Nevo et al. (2018+) <arXiv:1801.01529>.
An implementation of the Line Segment Detector on digital images described in the paper: "LSD: A Fast Line Segment Detector with a False Detection Control" by Rafael Grompone von Gioi et al (2012). The algorithm is explained at <doi:10.5201/ipol.2012.gjmr-lsd>.
Fast and multi-threaded implementation of isolation forest (Liu, Ting, Zhou (2008) <doi:10.1109/ICDM.2008.17>), extended isolation forest (Hariri, Kind, Brunner (2018) <doi:10.48550/arXiv.1811.02141>), SCiForest (Liu, Ting, Zhou (2010) <doi:10.1007/978-3-642-15883-4_18>), fair-cut forest (Cortes (2021) <doi:10.48550/arXiv.2110.13402>), robust random-cut forest (Guha, Mishra, Roy, Schrijvers (2016) <http://proceedings.mlr.press/v48/guha16.html>), and customizable variations of them, for isolation-based outlier detection, clustered outlier detection, distance or similarity approximation (Cortes (2019) <doi:10.48550/arXiv.1910.12362>), isolation kernel calculation (Ting, Zhu, Zhou (2018) <doi:10.1145/3219819.3219990>), and imputation of missing values (Cortes (2019) <doi:10.48550/arXiv.1911.06646>), based on random or guided decision tree splitting, and providing different metrics for scoring anomalies based on isolation depth or density (Cortes (2021) <doi:10.48550/arXiv.2111.11639>). Provides simple heuristics for fitting the model to categorical columns and handling missing data, and offers options for varying between random and guided splits, and for using different splitting criteria.
Semiparametric regression models on the cumulative incidence function for interval-censored competing risks data as described in Bakoyannis, Yu, & Yiannoutsos (2017) /doi10.1002/sim.7350 and the models with missing event types as described in Park, Bakoyannis, Zhang, & Yiannoutsos (2021) \doi10.1093/biostatistics/kxaa052. The proportional subdistribution hazards model (Fine-Gray model), the proportional odds model, and other models that belong to the class of semiparametric generalized odds rate transformation models.
This package provides a toolbox for constructing potential landscapes for Ising networks. The parameters of the networks can be directly supplied by users or estimated by the IsingFit package by van Borkulo and Epskamp (2016) <https://CRAN.R-project.org/package=IsingFit> from empirical data. The Ising model's Boltzmann distribution is preserved for the potential landscape function. The landscape functions can be used for quantifying and visualizing the stability of network states, as well as visualizing the simulation process.
Read and process isotopocule data from an Orbitrap Isotope Solutions mass spectrometer. Citation: Kantnerova et al. (Nature Protocols, 2024).
This package provides a fast (C) implementation of the iterative proportional fitting procedure.
Up-to-date data from the Unicode CLDR Project (where CLDR stands for Common Locale Data Repository') are available here as a series of easy-to-parse datasets. Several functions are provided for extracting key elements from the tabular datasets.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to Indonesia, such as holidays, economic indicators, and international demographic and geopolitical indicators. The package also includes a curated collection of open datasets focused on Indonesia, covering topics such as consumer prices, poverty probability, food prices by region, tourism destinations, and minimum wage statistics. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
Interactive dendrogram that enables the user to select and color clusters, to zoom and pan the dendrogram, and to visualize the clustered data not only in a built-in heat map, but also in GGobi interactive plots and user-supplied plots. This is a backport of Qt-based idendro (<https://github.com/tsieger/idendro>) to base R graphics and Tcl/Tk GUI.
This package provides a collection of wrapper functions for common variable and dataset manipulation workflows primarily used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions. Additionally, many of the functions return the tidyverse code used to obtain the result in an effort to bridge the gap between GUI and coding.
Iterator for generating permutations and combinations. They can be either drawn with or without replacement, or with distinct/ non-distinct items (multiset). The generated sequences are in lexicographical order (dictionary order). The algorithms to generate permutations and combinations are memory efficient. These iterative algorithms enable users to process all sequences without putting all results in the memory at the same time. The algorithms are written in C/C++ for faster performance. Note: iterpc is no longer being maintained. Users are recommended to switch to arrangements'.
Extensive penalized variable selection methods have been developed in the past two decades for analyzing high dimensional omics data, such as gene expressions, single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and others. However, lipidomics data have been rarely investigated by using high dimensional variable selection methods. This package incorporates our recently developed penalization procedures to conduct interaction analysis for high dimensional lipidomics data with repeated measurements. The core module of this package is developed in C++. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.
The current version provides functions to compute, print and summarize the Index of Sensitivity to Nonignorability (ISNI) in the generalized linear model for independent data, and in the marginal multivariate Gaussian model and the mixed-effects models for continuous and binary longitudinal/clustered data. It allows for arbitrary patterns of missingness in the regression outcomes caused by dropout and/or intermittent missingness. One can compute the sensitivity index without estimating any nonignorable models or positing specific magnitude of nonignorability. Thus ISNI provides a simple quantitative assessment of how robust the standard estimates assuming missing at random is with respect to the assumption of ignorability. For a tutorial, download at <https://huixie.people.uic.edu/Research/ISNI_R_tutorial.pdf>. For more details, see Troxel Ma and Heitjan (2004) and Xie and Heitjan (2004) <doi:10.1191/1740774504cn005oa> and Ma Troxel and Heitjan (2005) <doi:10.1002/sim.2107> and Xie (2008) <doi:10.1002/sim.3117> and Xie (2012) <doi:10.1016/j.csda.2010.11.021> and Xie and Qian (2012) <doi:10.1002/jae.1157>.
This package provides a pipeline to process nominal mass spectrometry data to create .msp files for untargeted analyses.