Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides S4 classes for Internet Protocol (IP) versions 4 and 6 addresses and efficient methods for IP addresses comparison, arithmetic, bit manipulation and lookup. Both IPv4 and IPv6 arbitrary ranges are also supported as well as internationalized ('IDN') domain lookup with and whois query.
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
To implement a general framework to quantitatively infer Community Assembly Mechanisms by Phylogenetic-bin-based null model analysis, abbreviated as iCAMP (Ning et al 2020) <doi:10.1038/s41467-020-18560-z>. It can quantitatively assess the relative importance of different community assembly processes, such as selection, dispersal, and drift, for both communities and each phylogenetic group ('bin'). Each bin usually consists of different taxa from a family or an order. The package also provides functions to implement some other published methods, including neutral taxa percentage (Burns et al 2016) <doi:10.1038/ismej.2015.142> based on neutral theory model and quantifying assembly processes based on entire-community null models ('QPEN', Stegen et al 2013) <doi:10.1038/ismej.2013.93>. It also includes some handy functions, particularly for big datasets, such as phylogenetic and taxonomic null model analysis at both community and bin levels, between-taxa niche difference and phylogenetic distance calculation, phylogenetic signal test within phylogenetic groups, midpoint root of big trees, etc. Version 1.3.x mainly improved the function for QPEN and added function icamp.cate() to summarize iCAMP results for different categories of taxa (e.g. core versus rare taxa).
This package contains bibliographic information for the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office.
It provides a generic set of tools for initializing a synthetic population with each individual in specific disease states, and making transitions between those disease states according to the rates calculated on each timestep. The new version 1.0.0 has C++ code integration to make the functions run faster. It has also a higher level function to actually run the transitions for the number of timesteps that users specify. Additional functions will follow for changing attributes on demographic, health belief and movement.
This package produces a publication-ready table that includes all effect estimates necessary for full reporting effect modification and interaction analysis as recommended by Knol and Vanderweele (2012) [<doi:10.1093/ije/dyr218>]. It also estimates confidence interval for the trio of additive interaction measures using the delta method (see Hosmer and Lemeshow (1992), [<doi:10.1097/00001648-199209000-00012>]), variance recovery method (see Zou (2008), [<doi:10.1093/aje/kwn104>]), or percentile bootstrapping (see Assmann et al. (1996), [<doi:10.1097/00001648-199605000-00012>]).
This package implements a suite of sensitivity analysis tools for instrumental variable estimates as described in Cinelli and Hazlett (2025) <doi:10.1093/biomet/asaf004>.
Make empirical Bayes incidence curves from reported case data using a specified delay distribution.
Know which loop iteration the code execution is up to by including a single, convenient function call inside the loop.
Computes the log likelihood for an inverse gamma stochastic volatility model using a closed form expression of the likelihood. The details of the computation of this closed form expression are given in Gonzalez and Majoni (2023) <http://rcea.org/RePEc/pdf/wp23-11.pdf> . The closed form expression is obtained for a stationary inverse gamma stochastic volatility model by marginalising out the volatility. This allows the user to obtain the maximum likelihood estimator for this non linear non Gaussian state space model. In addition, the user can obtain the estimates of the smoothed volatility using the exact smoothing distributions.
Given two unbiased samples of patient level data on cost and effectiveness for a pair of treatments, make head-to-head treatment comparisons by (i) generating the bivariate bootstrap resampling distribution of ICE uncertainty for a specified value of the shadow price of health, lambda, (ii) form the wedge-shaped ICE confidence region with specified confidence fraction within [0.50, 0.99] that is equivariant with respect to changes in lambda, (iii) color the bootstrap outcomes within the above confidence wedge with economic preferences from an ICE map with specified values of lambda, beta and gamma parameters, (iv) display VAGR and ALICE acceptability curves, and (v) illustrate variation in ICE preferences by displaying potentially non-linear indifference(iso-preference) curves from an ICE map with specified values of lambda, beta and either gamma or eta parameters.
Iterated Function Systems Estimator as in Iacus and La Torre (2005) <doi:10.1155/JAMDS.2005.33>.
Drawing statistical inference on the coefficients of a short- or long-horizon predictive regression with persistent regressors by using the IVX method of Magdalinos and Phillips (2009) <doi:10.1017/S0266466608090154> and Kostakis, Magdalinos and Stamatogiannis (2015) <doi:10.1093/rfs/hhu139>.
Interpretation methods for analyzing the behavior and individual predictions of modern neural networks in a three-step procedure: Converting the model, running the interpretation method, and visualizing the results. Implemented methods are, e.g., Connection Weights described by Olden et al. (2004) <doi:10.1016/j.ecolmodel.2004.03.013>, layer-wise relevance propagation ('LRP') described by Bach et al. (2015) <doi:10.1371/journal.pone.0130140>, deep learning important features ('DeepLIFT') described by Shrikumar et al. (2017) <doi:10.48550/arXiv.1704.02685> and gradient-based methods like SmoothGrad described by Smilkov et al. (2017) <doi:10.48550/arXiv.1706.03825>, Gradient x Input or Vanilla Gradient'. Details can be found in the accompanying scientific paper: Koenen & Wright (2024, Journal of Statistical Software, <doi:10.18637/jss.v111.i08>).
Interpreting the differences between mean scale scores across various forms of an assessment can be challenging. This difficulty arises from different mappings between raw scores and scale scores, complex mathematical relationships, adjustments based on judgmental procedures, and diverse equating functions applied to different assessment forms. An alternative method involves running simulations to explore the effect of incrementing raw scores on mean scale scores. The idmact package provides an implementation of this approach based on the algorithm detailed in Schiel (1998) <https://www.act.org/content/dam/act/unsecured/documents/ACT_RR98-01.pdf> which was developed to help interpret differences between mean scale scores on the American College Testing (ACT) assessment. The function idmact_subj() within the package offers a framework for running simulations on subject-level scores. In contrast, the idmact_comp() function provides a framework for conducting simulations on composite scores.
Assists in generating binary clustered data, estimates of Intracluster Correlation coefficient (ICC) for binary response in 16 different methods, and 5 different types of confidence intervals.
This package provides a tool to calculate and plot estimates from models in which an interaction between the main predictor and a continuous covariate has been specified. Methods used in the package refer to Harrell Jr FE (2015, ISBN:9783319330396); Durrleman S, Simon R. (1989) <doi:10.1002/sim.4780080504>; Greenland S. (1995) <doi:10.1097/00001648-199507000-00005>.
This package provides a set of tools for evaluating several measures of case influence for structural equation models.
Interactive plots for R.
This package provides an estimator for generalized linear models with incomplete data for discrete covariates. The estimation is based on the EM algorithm by the method of weights by Ibrahim (1990) <DOI:10.2307/2290013>.
This package provides functions and data sets to accompany the book Integrated Population Models: Theory and Ecological Applications with R and JAGS by Michael Schaub and Marc Kéry (ISBN: 9780128205648).
This is an substitute for the %V and %u formats which are not implemented on Windows. In addition, the package offers functions to convert from standard calender format yyyy-mm-dd to and from ISO 8601 week format yyyy-Www-d.
Dichotomous and polytomous data analysis and their scoring using the unidimensional Item Response Theory model (Chalmers (2012) <doi:10.18637/jss.v048.i06>) with user-friendly graphic User Interface. Suitable for beginners who are learning item response theory.
In classification problems a monotone relation between some predictors and the classes may be assumed. In this package isoboost we propose new boosting algorithms, based on LogitBoost, that incorporate this isotonicity information, yielding more accurate and easily interpretable rules.