Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Prepare objects to implement models over spatial and spacetime domains with the INLA package (<https://www.r-inla.org>). These objects contain data to for the cgeneric interface in INLA', enabling fast parallel computations. We implemented the spatial barrier model, see Bakka et. al. (2019) <doi:10.1016/j.spasta.2019.01.002>, and some of the spatio-temporal models proposed in Lindgren et. al. (2024) <https://raco.cat/index.php/SORT/article/view/428665>. Details are provided in the available vignettes and from the URL bellow.
Integrated B-spline function.
Power analysis for regression models which test the interaction of two or three independent variables on a single dependent variable. Includes options for correlated interacting variables and specifying variable reliability. Two-way interactions can include continuous, binary, or ordinal variables. Power analyses can be done either analytically or via simulation. Includes tools for simulating single data sets and visualizing power analysis results. The primary functions are power_interaction_r2() and power_interaction() for two-way interactions, and power_interaction_3way_r2() for three-way interactions. Please cite as: Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM (2023). "Tutorial: Power analyses for interaction effects in cross-sectional regressions." <doi:10.1177/25152459231187531>.
Calculation of informative simultaneous confidence intervals for graphical described multiple test procedures and given information weights. Bretz et al. (2009) <doi:10.1002/sim.3495> and Brannath et al. (2024) <doi:10.48550/arXiv.2402.13719>. Furthermore, exploration of the behavior of the informative bounds in dependence of the information weights. Comparisons with compatible bounds are possible. Strassburger and Bretz (2008) <doi:10.1002/sim.3338>.
Assists in generating categorical clustered outcome data, estimating the Intracluster Correlation Coefficient (ICC) for nominal or ordinal data with 2+ categories under the resampling and method of moments (MoM) methods, with confidence intervals.
This package provides a dataset of the top colours of photos from Instagram taken in 2014 in the city of Vancouver, British Columbia, Canada. It consists of: top colour and counts data. This data was obtained using the Instagram API. Instagram is a web photo sharing service. It can be found at: <https://instagram.com>. The Instagram API is documented at: <https://instagram.com/developer/>.
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
Imputation of longitudinal categorical covariates. We use a methodological framework which ensures that the plausibility of transitions is preserved, overfitting and colinearity issues are resolved, and confounders can be utilized. See Mamouris (2023) <doi:10.1002/sim.9919> for an overview.
For different linear dimension reduction methods like principal components analysis (PCA), independent components analysis (ICA) and supervised linear dimension reduction tests and estimates for the number of interesting components (ICs) are provided.
This package provides methods for quantifying temporal and spatial causality through information flow, and decomposing it into unique, redundant, and synergistic components, following the framework described in Martinez-Sanchez et al. (2024) <doi:10.1038/s41467-024-53373-4>.
When you want to install R package or download file from GitHub, but you can't access GitHub, this package helps you install R packages or download file from GitHub via the proxy website <https://gh-proxy.com/> or <https://ghfast.top/>, which is in real-time sync with GitHub.
This package provides functions to access real-time infectious disease data from the disease.sh API', including COVID-19 global, US states, continent, and country statistics, vaccination coverage, influenza-like illness data from the Centers for Disease Control and Prevention (CDC), and more. Also includes curated datasets on a variety of infectious diseases such as influenza, measles, dengue, Ebola, tuberculosis, meningitis, AIDS, and others. The package supports epidemiological research and data analysis by combining API access with high-quality historical and survey datasets on infectious diseases. For more details on the disease.sh API', see <https://disease.sh/>.
Evaluating if values of vectors are within different open/closed intervals (`x %[]% c(a, b)`), or if two closed intervals overlap (`c(a1, b1) %[]o[]% c(a2, b2)`). Operators for negation and directional relations also implemented.
This package provides S4 classes for Internet Protocol (IP) versions 4 and 6 addresses and efficient methods for IP addresses comparison, arithmetic, bit manipulation and lookup. Both IPv4 and IPv6 arbitrary ranges are also supported as well as internationalized ('IDN') domain lookup with and whois query.
Download data from ISTAT (Italian Institute of Statistics) database, both old and new provider (respectively, <http://dati.istat.it/> and <https://esploradati.istat.it/databrowser/>). Additional functions for manipulating data are provided. Moreover, a shiny application called shinyIstat can be used to search, download and filter datasets more easily.
Introductory statistics methods to accompany "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) by Beth Chance & Allan Rossman (2024) <https://rossmanchance.com/iscam4/>. Tools to introduce statistical concepts with a focus on simulation approaches. Functions are verbose, designed to provide ample output for students to understand what each function does. Additionally, most functions are accompanied with plots. The package is designed to be used in an educational setting alongside the ISCAM textbook.
Infix operators to detect, subset, and replace the elements matched by a given condition. The functions have several variants of operator types, including subsets, ranges, regular expressions and others. Implemented operators work on vectors, matrices, and lists.
Simple plotting function(s) for exploratory data analysis with flexible options allowing for easy plot customisation. The goal is to make it easy for beginners to start exploring a dataset through simple R function calls, as well as provide a similar interface to summary statistics and inference information. Includes functionality to generate interactive HTML-driven graphs. Used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions.
Calculate various information criteria in literature for "lm" and "glm" objects.
Estimate the orientation of an inertial measurement unit (IMU) with a 3-axis accelerometer and a 3-axis gyroscope using a complementary filter. imuf takes an IMU's accelerometer and gyroscope readings, time duration, its initial orientation, and a gain factor as inputs, and returns an estimate of the IMU's final orientation.
This package provides access to granular socioeconomic indicators from the Spanish Statistical Office (INE) Household Income Distribution Atlas. The package downloads and processes data from a companion GitHub repository (<https://github.com/pablogguz/ineAtlas.data/>) which contains processed versions of the official INE Atlas data. Functions are provided to fetch data at multiple geographic levels (municipalities, districts, and census tracts), including income indicators, demographic characteristics, and inequality metrics. The data repository is updated every year when new releases are published by INE.
Implementation of analytical and sampling-based power analyses for the Wald, likelihood ratio (LR), score, and gradient tests. Can be applied to item response theory (IRT) models that are fitted using marginal maximum likelihood estimation. The methods are described in our paper (Zimmer et al. (2022) <doi:10.1007/s11336-022-09883-5>).
After testing for biased treatment assignment in an observational study using an unaffected outcome, the sensitivity analysis is constrained to be compatible with that test. The package uses the optimization software gurobi obtainable from <https://www.gurobi.com/>, together with its associated R package, also called gurobi; see: <https://www.gurobi.com/documentation/7.0/refman/installing_the_r_package.html>. The method is a substantial computational and practical enhancement of a concept introduced in Rosenbaum (1992) Detecting bias with confidence in observational studies Biometrika, 79(2), 367-374 <doi:10.1093/biomet/79.2.367>.
Four datasets are provided here from the Intendo game Super Jetroid'. It is data from the 2015 year of operation and it comprises a revenue table ('all_revenue'), a daily users table ('users_daily'), a user summary table ('user_summary'), and a table with data on all user sessions ('all_sessions'). These core datasets come in different sizes, and, each of them has a variant that was intentionally made faulty (totally riddled with errors and inconsistencies). This suite of tables is useful for testing with packages that focus on data validation and data documentation.