Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides classes and methods for seismic data analysis. The base classes and methods are inspired by the python code found in the ObsPy python toolbox <https://github.com/obspy/obspy>. Additional classes and methods support data returned by web services provided by the IRIS DMC <http://service.iris.edu/>.
This package provides methods for quantifying temporal and spatial causality through information flow, and decomposing it into unique, redundant, and synergistic components, following the framework described in Martinez-Sanchez et al. (2024) <doi:10.1038/s41467-024-53373-4>.
This package provides tools to analyze point patterns in space occurring over planar network structures derived from graph-related intensity measures for undirected, directed, and mixed networks. This package is based on the following research: Eckardt and Mateu (2018) <doi:10.1080/10618600.2017.1391695>. Eckardt and Mateu (2021) <doi:10.1007/s11749-020-00720-4>.
This toolbox makes working with oxygen, carbon, and clumped isotope data reproducible and straightforward. Use it to quickly calculate isotope fractionation factors, and apply paleothermometry equations.
Integrated B-spline function.
This package implements likelihood based methods for mediation analysis.
Most existing approaches for network reconstruction can only infer an overall network and, also, fail to capture a complete set of network properties. To address these issues, a new model has been developed, which converts static data into their dynamic form. idopNetwork is an R interface to this model, it can inferring informative, dynamic, omnidirectional and personalized networks. For more information on functional clustering part, see Kim et al. (2008) <doi:10.1534/genetics.108.093690>, Wang et al. (2011) <doi:10.1093/bib/bbr032>. For more information on our model, see Chen et al. (2019) <doi:10.1038/s41540-019-0116-1>, and Cao et al. (2022) <doi:10.1080/19490976.2022.2106103>.
The app will calculate the ICER (incremental cost-effectiveness ratio) Rawlins (2012) <doi:10.1016/B978-0-7020-4084-9.00044-6> from the mean costs and quality-adjusted life years (QALY) Torrance and Feeny (2009) <doi:10.1017/S0266462300008461> for a set of treatment options, and draw the efficiency frontier in the costs-effectiveness plane. The app automatically identifies and excludes dominated and extended-dominated options from the ICER calculation.
Allows an interactive assessment of the timing of interim analyses. The algorithm simulates both the recruitment and treatment/event phase of a clinical trial based on the package interim'.
This package implements the compartment model from Tokars (2018) <doi:10.1016/j.vaccine.2018.10.026>. This enables quantification of population-wide impact of vaccination against vaccine-preventable diseases such as influenza.
Item response theory (IRT) parameter estimation using marginal maximum likelihood and expectation-maximization algorithm (Bock & Aitkin, 1981 <doi:10.1007/BF02293801>). Within parameter estimation algorithm, several methods for latent distribution estimation are available. Reflecting some features of the true latent distribution, these latent distribution estimation methods can possibly enhance the estimation accuracy and free the normality assumption on the latent distribution.
This package provides a tool to calculate the performance of a time series in a specific date or period. It is more intended for data analysis in the fields of finance, banking, telecommunications or operational marketing.
Paquete creado con el fin de facilitar el cálculo y distribución del à ndice Socio Material Territorial (ISMT), elaborado por el Observatorio de Ciudades UC. La metodologà a completa está disponible en "ISMT" (<https://ideocuc-ocuc.hub.arcgis.com/datasets/6ed956450cfc4293b7d90df3ce3474e4/about>) [Observatorio de Ciudades UC (2019)]. || Package created to facilitate the calculation and distribution of the Socio-Material Territorial Index by Observatorio de Ciudades UC. The full methodology is available at "ISMT" (<https://ideocuc-ocuc.hub.arcgis.com/datasets/6ed956450cfc4293b7d90df3ce3474e4/about>) [Observatorio de Ciudades UC (2019)].
Analyzing Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurement data to evaluate isotope ratios (IRs) is a complex process. The IsoCor package facilitates this process and renders it reproducible by providing a function to run a Shiny'-App locally in any web browser. In this App the user can upload data files of various formats, select ion traces, apply peak detection and perform calculation of IRs and delta values. Results are provided as figures and tables and can be exported. The App, therefore, facilitates data processing of ICP-MS experiments to quickly obtain optimal processing parameters compared to traditional Excel worksheet based approaches. A more detailed description can be found in the corresponding article <doi:10.1039/D2JA00208F>. The most recent version of IsoCor can be tested online at <https://apps.bam.de/shn00/IsoCor/>.
Compute several variations of the Implicit Association Test (IAT) scores, including the D scores (Greenwald, Nosek, Banaji, 2003, <doi:10.1037/0022-3514.85.2.197>) and the new scores that were developed using robust statistics (Richetin, Costantini, Perugini, and Schonbrodt, 2015, <doi:10.1371/journal.pone.0129601>).
This package implements Interpretable Boosted Linear Models (IBLMs). These combine a conventional generalized linear model (GLM) with a machine learning component, such as XGBoost. The package also provides tools within for explaining and analyzing these models. For more details see Gawlowski and Wang (2025) <https://ifoa-adswp.github.io/IBLM/reference/figures/iblm_paper.pdf>.
Merges and downloads SPSS data from different International Large-Scale Assessments (ILSA), including: Trends in International Mathematics and Science Study (TIMSS), Progress in International Reading Literacy Study (PIRLS), and others.
Analyzes raw abundance data from a cellular thermal shift experiment and calculates melt temperatures and melt shifts for each protein in the experiment. McCracken (2022) <doi:10.1101/2022.12.30.522131>.
Evaluating if values of vectors are within different open/closed intervals (`x %[]% c(a, b)`), or if two closed intervals overlap (`c(a1, b1) %[]o[]% c(a2, b2)`). Operators for negation and directional relations also implemented.
An implementation of the International Association for the Properties of Water (IAPWS) Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use and on the releases for viscosity, conductivity, surface tension and melting pressure.
Implement a multivariate analysis of the impact of items to identify a bias in the questionnaire validation of Likert-type scale variables. The items requires considering a null value (category doesn't have tendency). Offering frequency, importance and impact of the items.
Compute permutation- based performance measures and create partial dependence plots for (cross-validated) randomForest and ada models.
This package provides a set of functions for performing null hypothesis testing on samples of persistence diagrams using the theory of permutations. Currently, only two-sample testing is implemented. Inputs can be either samples of persistence diagrams themselves or vectorizations. In the former case, they are embedded in a metric space using either the Bottleneck or Wasserstein distance. In the former case, persistence data becomes functional data and inference is performed using tools available in the fdatest package. Main reference for the interval-wise testing method: Pini A., Vantini S. (2017) "Interval-wise testing for functional data" <doi:10.1080/10485252.2017.1306627>. Main reference for inference on populations of networks: Lovato, I., Pini, A., Stamm, A., & Vantini, S. (2020) "Model-free two-sample test for network-valued data" <doi:10.1016/j.csda.2019.106896>.
Extensive penalized variable selection methods have been developed in the past two decades for analyzing high dimensional omics data, such as gene expressions, single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and others. However, lipidomics data have been rarely investigated by using high dimensional variable selection methods. This package incorporates our recently developed penalization procedures to conduct interaction analysis for high dimensional lipidomics data with repeated measurements. The core module of this package is developed in C++. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.