_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-interatrix 1.1.5
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/lbbe-software/Interatrix
Licenses: GPL 2+
Build system: r
Synopsis: Compute Chi-Square Measures with Corrections
Description:

Chi-square tests are computed with corrections.

r-ide 0.3.1
Propagated dependencies: r-tidyr@1.3.1 r-sparseinv@0.1.3 r-spacetime@1.3-3 r-sp@2.2-0 r-matrix@1.7-4 r-ggplot2@4.0.1 r-frk@2.3.2 r-dplyr@1.1.4 r-deoptim@2.2-8
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IDE
Licenses: GPL 2+
Build system: r
Synopsis: Integro-Difference Equation Spatio-Temporal Models
Description:

The Integro-Difference Equation model is a linear, dynamical model used to model phenomena that evolve in space and in time; see, for example, Cressie and Wikle (2011, ISBN:978-0-471-69274-4) or Dewar et al. (2009) <doi:10.1109/TSP.2008.2005091>. At the heart of the model is the kernel, which dictates how the process evolves from one time point to the next. Both process and parameter reduction are used to facilitate computation, and spatially-varying kernels are allowed. Data used to estimate the parameters are assumed to be readings of the process corrupted by Gaussian measurement error. Parameters are fitted by maximum likelihood, and estimation is carried out using an evolution algorithm.

r-ic10 2.0.2
Propagated dependencies: r-pamr@1.57 r-impute@1.84.0 r-ic10trainingdata@2.0.1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=iC10
Licenses: GPL 3
Build system: r
Synopsis: Copy Number and Expression-Based Classifier for Breast Tumours
Description:

Implementation of the classifier described in the paper Ali HR et al (2014) <doi:10.1186/s13059-014-0431-1>. It uses copy number and/or expression form breast cancer data, trains a Tibshirani's pamr classifier with the features available and predicts the iC10 group.

r-itdr 2.0.1
Propagated dependencies: r-tidyr@1.3.1 r-mass@7.3-65 r-magic@1.6-1 r-geigen@2.3 r-energy@1.7-12
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=itdr
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Integral Transformation Methods for SDR in Regression
Description:

The itdr() routine allows for the estimation of sufficient dimension reduction subspaces in univariate regression such as the central mean subspace or central subspace in regression. This is achieved using Fourier transformation methods proposed by Zhu and Zeng (2006) <doi:10.1198/016214506000000140>, convolution transformation methods proposed by Zeng and Zhu (2010) <doi:10.1016/j.jmva.2009.08.004>, and iterative Hessian transformation methods proposed by Cook and Li (2002) <doi:10.1214/aos/1021379861>. Additionally, mitdr() function provides optimal estimators for sufficient dimension reduction subspaces in multivariate regression by optimizing a discrepancy function using a Fourier transform approach proposed by Weng and Yin (2022) <doi:10.5705/ss.202020.0312>, and selects the sufficient variables using Fourier transform sparse inverse regression estimators proposed by Weng (2022) <doi:10.1016/j.csda.2021.107380>.

r-iadt 1.2.1
Propagated dependencies: r-rmpfr@1.1-2 r-rdpack@2.6.4 r-mvnfast@0.2.8 r-mgcv@1.9-4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IADT
Licenses: GPL 3
Build system: r
Synopsis: Interaction Difference Test for Prediction Models
Description:

This package provides functions to conduct a model-agnostic asymptotic hypothesis test for the identification of interaction effects in black-box machine learning models. The null hypothesis assumes that a given set of covariates does not contribute to interaction effects in the prediction model. The test statistic is based on the difference of variances of partial dependence functions (Friedman (2008) <doi:10.1214/07-AOAS148> and Welchowski (2022) <doi:10.1007/s13253-021-00479-7>) with respect to the original black-box predictions and the predictions under the null hypothesis. The hypothesis test can be applied to any black-box prediction model, and the null hypothesis of the test can be flexibly specified according to the research question of interest. Furthermore, the test is computationally fast to apply as the null distribution does not require resampling or refitting black-box prediction models.

r-internl 0.1.0
Propagated dependencies: r-mlmetrics@1.1.3 r-forecast@8.24.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=InterNL
Licenses: GPL 3
Build system: r
Synopsis: Time Series Intervention Model Using Non-Linear Function
Description:

Intervention analysis is used to investigate structural changes in data resulting from external events. Traditional time series intervention models, viz. Autoregressive Integrated Moving Average model with exogeneous variables (ARIMA-X) and Artificial Neural Networks with exogeneous variables (ANN-X), rely on linear intervention functions such as step or ramp functions, or their combinations. In this package, the Gompertz, Logistic, Monomolecular, Richard and Hoerl function have been used as non-linear intervention function. The equation of the above models are represented as: Gompertz: A * exp(-B * exp(-k * t)); Logistic: K / (1 + ((K - N0) / N0) * exp(-r * t)); Monomolecular: A * exp(-k * t); Richard: A + (K - A) / (1 + exp(-B * (C - t)))^(1/beta) and Hoerl: a*(b^t)*(t^c).This package introduced algorithm for time series intervention analysis employing ARIMA and ANN models with a non-linear intervention function. This package has been developed using algorithm of Yeasin et al. <doi:10.1016/j.hazadv.2023.100325> and Paul and Yeasin <doi:10.1371/journal.pone.0272999>.

r-iv-sensemakr 0.1.0
Propagated dependencies: r-sensemakr@0.1.6
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://carloscinelli.com/iv.sensemakr/
Licenses: GPL 3
Build system: r
Synopsis: Sensitivity Analysis Tools for Instrumental Variable Estimates
Description:

This package implements a suite of sensitivity analysis tools for instrumental variable estimates as described in Cinelli and Hazlett (2025) <doi:10.1093/biomet/asaf004>.

r-incompair 0.1.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IncomPair
Licenses: GPL 2+
Build system: r
Synopsis: Comparison of Means for the Incomplete Paired Data
Description:

This package implements a variety of nonparametric and parametric methods that are commonly used when the data set is a mixture of paired observations and independent samples. The package also calculates and returns values of different tests with their corresponding p-values. Bhoj, D. S. (1991) <doi:10.1002/bimj.4710330108> "Testing equality of means in the presence of correlation and missing data". Dubnicka, S. R., Blair, R. C., and Hettmansperger, T. P. (2002) <doi:10.22237/jmasm/1020254460> "Rank-based procedures for mixed paired and two-sample designs". Einsporn, R. L. and Habtzghi, D. (2013) <https://pdfs.semanticscholar.org/89a3/90bafeb2bc41ed4414533cfd5ab84a6b54b6.pdf> "Combining paired and two-sample data using a permutation test". Ekbohm, G. (1976) <doi:10.1093/biomet/63.2.299> "On comparing means in the paired case with incomplete data on both responses". Lin, P. E. and Stivers, L. E. (1974) <doi:10.1093/biomet/61.2.325> On difference of means with incomplete data". Maritz, J. S. (1995) <doi:10.1111/j.1467-842x.1995.tb00649.x> "A permutation paired test allowing for missing values".

r-inecolr 0.1.0
Propagated dependencies: r-vegan@2.7-2 r-tree@1.0-45 r-terra@1.8-86 r-stringr@1.6.0 r-multcomp@1.4-29 r-gtools@3.9.5 r-gmodels@2.19.1 r-cli@3.6.5 r-boot@1.3-32 r-betapart@1.6.1 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=inecolr
Licenses: GPL 3
Build system: r
Synopsis: Modeling and Plotting for Ecologist
Description:

It provides multiple functions that are useful for ecological research and teaching statistics to ecologists. It is based on data analysis courses offered at the Instituto de Ecologà a AC (INECOL). For references and published evidence see, Manrique-Ascencio, et al (2024) <doi:10.1111/gcb.17282>, Manrique-Ascencio et al (2024) <doi:10.1111/plb.13683>, Ruiz-Guerra et al(2017) <doi:10.17129/botsci.812>, Juarez-Fragoso et al (2024) <doi:10.1007/s10980-024-01809-z>, Papaqui-Bello et al (2024) <doi:10.13102/sociobiology.v71i2.10503>.

r-inctools 1.0.15
Propagated dependencies: r-tmvtnorm@1.7 r-tibble@3.3.0 r-rlang@1.1.6 r-pracma@2.4.6 r-plyr@1.8.9 r-magrittr@2.0.4 r-glm2@1.2.1 r-ggplot2@4.0.1 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17 r-cubature@2.1.4-1 r-binom@1.1-1.1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: http://www.incidence-estimation.org/page/inctools
Licenses: GPL 3
Build system: r
Synopsis: Incidence Estimation Tools
Description:

This package provides tools for estimating incidence from biomarker data in cross- sectional surveys, and for calibrating tests for recent infection. Implements and extends the method of Kassanjee et al. (2012) <doi:10.1097/EDE.0b013e3182576c07>.

r-ig-degree-betweenness 0.2.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rlist@0.4.6.2 r-qgraph@1.9.8 r-igraphdata@1.0.1 r-igraph@2.2.1 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-bbmisc@1.13
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/benyamindsmith/ig.degree.betweenness
Licenses: Expat
Build system: r
Synopsis: "Smith-Pittman Community Detection Algorithm for 'igraph' Objects (2024)"
Description:

This package implements the "Smith-Pittman" community detection algorithm for network analysis using igraph objects. This algorithm combines node degree and betweenness centrality measures to identify communities within networks, with a gradient evident in social partitioning. The package provides functions for community detection, visualization, and analysis of the resulting community structure. Methods are based on results from Smith, Pittman and Xu (2024) <doi:10.48550/arXiv.2411.01394>.

r-iimi 1.2.2
Propagated dependencies: r-xgboost@1.7.11.1 r-stringr@1.6.0 r-rsamtools@2.26.0 r-rdpack@2.6.4 r-randomforest@4.7-1.2 r-r-utils@2.13.0 r-mtps@1.0.2 r-mltools@0.3.5 r-iranges@2.44.0 r-genomicalignments@1.46.0 r-dplyr@1.1.4 r-data-table@1.17.8 r-caret@7.0-1 r-biostrings@2.78.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=iimi
Licenses: Expat
Build system: r
Synopsis: Identifying Infection with Machine Intelligence
Description:

This package provides a novel machine learning method for plant viruses diagnostic using genome sequencing data. This package includes three different machine learning models, random forest, XGBoost, and elastic net, to train and predict mapped genome samples. Mappability profile and unreliable regions are introduced to the algorithm, and users can build a mappability profile from scratch with functions included in the package. Plotting mapped sample coverage information is provided.

r-icc 2.4.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/matthewwolak/ICC
Licenses: GPL 2+
Build system: r
Synopsis: Facilitating Estimation of the Intraclass Correlation Coefficient
Description:

Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.

r-isocat 0.3.0
Propagated dependencies: r-sp@2.2-0 r-raster@3.6-32 r-plyr@1.8.9 r-magrittr@2.0.4 r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=isocat
Licenses: CC0
Build system: r
Synopsis: Isotope Origin Clustering and Assignment Tools
Description:

This resource provides tools to create, compare, and post-process spatial isotope assignment models of animal origin. It generates probability-of-origin maps for individuals based on user-provided tissue and environment isotope values (e.g., as generated by IsoMAP, Bowen et al. [2013] <doi:10.1111/2041-210X.12147>) using the framework established in Bowen et al. (2010) <doi:10.1146/annurev-earth-040809-152429>). The package isocat can then quantitatively compare and cluster these maps to group individuals by similar origin. It also includes techniques for applying four approaches (cumulative sum, odds ratio, quantile only, and quantile simulation) with which users can summarize geographic origins and probable distance traveled by individuals. Campbell et al. [2020] establishes several of the functions included in this package <doi:10.1515/ami-2020-0004>.

r-irisseismic 1.7.0
Propagated dependencies: r-xml@3.99-0.20 r-stringr@1.6.0 r-signal@1.8-1 r-seismicroll@1.1.5 r-rcurl@1.98-1.17 r-pracma@2.4.6
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IRISSeismic
Licenses: GPL 2+
Build system: r
Synopsis: Classes and Methods for Seismic Data Analysis
Description:

This package provides classes and methods for seismic data analysis. The base classes and methods are inspired by the python code found in the ObsPy python toolbox <https://github.com/obspy/obspy>. Additional classes and methods support data returned by web services provided by the IRIS DMC <http://service.iris.edu/>.

r-iccmult 1.0.1
Propagated dependencies: r-lme4@1.1-37 r-iccbin@1.1.1 r-gtools@3.9.5 r-dirmult@0.1.3-5
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/ncs14/iccmult
Licenses: Expat
Build system: r
Synopsis: Intracluster Correlation Coefficient (ICC) in Clustered Categorical Data
Description:

Assists in generating categorical clustered outcome data, estimating the Intracluster Correlation Coefficient (ICC) for nominal or ordinal data with 2+ categories under the resampling and method of moments (MoM) methods, with confidence intervals.

r-ip 0.1.6
Propagated dependencies: r-stringi@1.8.7
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IP
Licenses: GPL 2+
Build system: r
Synopsis: Classes and Methods for 'IP' Addresses
Description:

This package provides S4 classes for Internet Protocol (IP) versions 4 and 6 addresses and efficient methods for IP addresses comparison, arithmetic, bit manipulation and lookup. Both IPv4 and IPv6 arbitrary ranges are also supported as well as internationalized ('IDN') domain lookup with and whois query.

r-indiedown 0.1.1
Propagated dependencies: r-withr@3.0.2 r-rlang@1.1.6 r-gfonts@0.2.0 r-fs@1.6.6 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cynkra.github.io/indiedown/
Licenses: Expat
Build system: r
Synopsis: Individual R Markdown Templates
Description:

Simplifies the generation of customized R Markdown PDF templates. A template may include an individual logo, typography, geometry or color scheme. The package provides a skeleton with detailed instructions for customizations. The skeleton can be modified by changing defaults in the YAML header, by adding additional LaTeX commands or by applying dynamic adjustments in R. Individual corporate design elements, such as a title page, can be added as R functions that produce LaTeX code.

r-ibclust 1.2.1
Propagated dependencies: r-rje@1.12.1 r-rdpack@2.6.4 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-np@0.60-18
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IBclust
Licenses: GPL 3+
Build system: r
Synopsis: Information Bottleneck Methods for Clustering Mixed-Type Data
Description:

This package implements multiple variants of the Information Bottleneck ('IB') method for clustering datasets containing continuous, categorical (nominal/ordinal) and mixed-type variables. The package provides deterministic, agglomerative, generalized, and standard IB clustering algorithms that preserve relevant information while forming interpretable clusters. The Deterministic Information Bottleneck is described in Costa et al. (2024) <doi:10.48550/arXiv.2407.03389>. The standard IB method originates from Tishby et al. (2000) <doi:10.48550/arXiv.physics/0004057>, the agglomerative variant from Slonim and Tishby (1999) <https://papers.nips.cc/paper/1651-agglomerative-information-bottleneck>, and the generalized IB from Strouse and Schwab (2017) <doi:10.1162/NECO_a_00961>.

r-ineqjd 1.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=ineqJD
Licenses: GPL 2+
Build system: r
Synopsis: Inequality Joint Decomposition
Description:

Computes and decomposes Gini, Bonferroni and Zenga 2007 point and synthetic concentration indexes. Decompositions are intended: by sources, by subpopulations and by sources and subpopulations jointly. References, Zenga M. M.(2007) <doi:10.1400/209575> Zenga M. (2015) <doi:10.1400/246627> Zenga M., Valli I. (2017) <doi:10.26350/999999_000005> Zenga M., Valli I. (2018) <doi:10.26350/999999_000011>.

r-imneuron 0.1.0
Propagated dependencies: r-neuralnet@1.44.2 r-mlmetrics@1.1.3 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=Imneuron
Licenses: GPL 3+
Build system: r
Synopsis: AI Powered Neural Network Solutions for Regression Tasks
Description:

It offers a sophisticated and versatile tool for creating and evaluating artificial intelligence based neural network models tailored for regression analysis on datasets with continuous target variables. Leveraging the power of neural networks, it allows users to experiment with various hidden neuron configurations across two layers, optimizing model performance through "5 fold"" or "10 fold"" cross validation. The package normalizes input data to ensure efficient training and assesses model accuracy using key metrics such as R squared (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Percentage Error (PER). By storing and visualizing the best performing models, it provides a comprehensive solution for precise and efficient regression modeling making it an invaluable tool for data scientists and researchers aiming to harness AI for predictive analytics.

r-iron 0.1.5
Propagated dependencies: r-robustbase@0.99-6 r-rcpp@1.1.0 r-gridextra@2.3 r-ggpubr@0.6.2 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/nunompmoniz/IRon
Licenses: CC0
Build system: r
Synopsis: Solving Imbalanced Regression Tasks
Description:

Imbalanced domain learning has almost exclusively focused on solving classification tasks, where the objective is to predict cases labelled with a rare class accurately. Such a well-defined approach for regression tasks lacked due to two main factors. First, standard regression tasks assume that each value is equally important to the user. Second, standard evaluation metrics focus on assessing the performance of the model on the most common cases. This package contains methods to tackle imbalanced domain learning problems in regression tasks, where the objective is to predict extreme (rare) values. The methods contained in this package are: 1) an automatic and non-parametric method to obtain such relevance functions; 2) visualisation tools; 3) suite of evaluation measures for optimisation/validation processes; 4) the squared-error relevance area measure, an evaluation metric tailored for imbalanced regression tasks. More information can be found in Ribeiro and Moniz (2020) <doi:10.1007/s10994-020-05900-9>.

r-ipmr 0.0.7
Propagated dependencies: r-rlang@1.1.6 r-rcpp@1.1.0 r-purrr@1.2.0 r-magrittr@2.0.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://padrinoDB.github.io/ipmr/
Licenses: Expat
Build system: r
Synopsis: Integral Projection Models
Description:

Flexibly implements Integral Projection Models using a mathematical(ish) syntax. This package will not help with the vital rate modeling process, but will help convert those regression models into an IPM. ipmr handles density dependence and environmental stochasticity, with a couple of options for implementing the latter. In addition, provides functions to avoid unintentional eviction of individuals from models. Additionally, provides model diagnostic tools, plotting functionality, stochastic/deterministic simulations, and analysis tools. Integral projection models are described in depth by Easterling et al. (2000) <doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013) <doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>, and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>. Williams et al. (2012) <doi:10.1890/11-2147.1> discuss the problem of unintentional eviction.

r-irepro 1.2
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=iRepro
Licenses: GPL 3
Build system: r
Synopsis: Reproducibility for Interval-Censored Data
Description:

Calculates intraclass correlation coefficient (ICC) for assessing reproducibility of interval-censored data with two repeated measurements (Kovacic and Varnai (2014) <doi:10.1097/EDE.0000000000000139>). ICC is estimated by maximum likelihood from model with one fixed and one random effect (both intercepts). Help in model checking (normality of subjects means and residuals) is provided.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283