Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Develops stochastic models based on the Theory of Island Biogeography (TIB) of MacArthur and Wilson (1967) <doi:10.1023/A:1016393430551> and extensions. It implements methods to estimate colonization and extinction rates (including environmental variables) given presence-absence data, simulates community assembly, and performs model selection.
An implementation of the Harris Corner Detection as described in the paper "An Analysis and Implementation of the Harris Corner Detector" by Sánchez J. et al (2018) available at <doi:10.5201/ipol.2018.229>. The package allows to detect relevant points in images which are characteristic to the digital image.
Fits covariate dependent partial correlation matrices for integrative models to identify differential networks between two groups. The methods are described in Class et. al., (2018) <doi:10.1093/bioinformatics/btx750> and Ha et. al., (2015) <doi:10.1093/bioinformatics/btv406>.
This package performs Invariant Coordinate Selection (ICS) (Tyler, Critchley, Duembgen and Oja (2009) <doi:10.1111/j.1467-9868.2009.00706.x>) and especially ICS for multivariate outlier detection with application to quality control (Archimbaud, Nordhausen, Ruiz-Gazen (2018) <doi:10.1016/j.csda.2018.06.011>) using a shiny app.
Computes individual causes of death and population cause-specific mortality fractions using the InSilicoVA algorithm from McCormick et al. (2016) <DOI:10.1080/01621459.2016.1152191>. It uses data derived from verbal autopsy (VA) interviews, in a format similar to the input of the widely used InterVA method. This package provides general model fitting and customization for InSilicoVA algorithm and basic graphical visualization of the output.
Convert irregularly spaced longitudinal data into regular intervals for further analysis, and perform clustering using advanced machine learning techniques. The package is designed for handling complex longitudinal datasets, optimizing them for research in healthcare, demography, and other fields requiring temporal data modeling.
This package implements the "Smith-Pittman" community detection algorithm for network analysis using igraph objects. This algorithm combines node degree and betweenness centrality measures to identify communities within networks, with a gradient evident in social partitioning. The package provides functions for community detection, visualization, and analysis of the resulting community structure. Methods are based on results from Smith, Pittman and Xu (2024) <doi:10.48550/arXiv.2411.01394>.
This package provides functions to import and handle infrared spectra (import from .csv and Thermo Galactic's .spc', baseline correction, binning, clipping, interpolating, smoothing, averaging, adding, subtracting, dividing, multiplying, atmospheric correction, tidyverse methods, plotting).
Assists in generating binary clustered data, estimates of Intracluster Correlation coefficient (ICC) for binary response in 16 different methods, and 5 different types of confidence intervals.
This package performs inference with the lasso in Gaussian Graphical Models. The package consists of wrappers for functions from the hdi package.
This package provides efficient implementation of the Isolate-Detect methodology for the consistent estimation of the number and location of multiple change-points in one-dimensional data sequences from the "deterministic + noise" model. For details on the Isolate-Detect methodology, please see Anastasiou and Fryzlewicz (2018) <https://docs.wixstatic.com/ugd/24cdcc_6a0866c574654163b8255e272bc0001b.pdf>. Currently implemented scenarios are: piecewise-constant signal with Gaussian noise, piecewise-constant signal with heavy-tailed noise, continuous piecewise-linear signal with Gaussian noise, continuous piecewise-linear signal with heavy-tailed noise.
This package provides access to core inflation functions. Four different core inflation functions are provided. The well known trimmed means, exclusion and double weighing methods, alongside the new Triple Filter method introduced in Ferreira et al. (2016) <https://goo.gl/UYLhcj>.
This package provides a set of functions to estimate interactions flexibly in the face of possibly many controls. Implements the procedures described in Blackwell and Olson (2022) <doi:10.1017/pan.2021.19>.
This package provides a collection of Item Response Theory (IRT) and Computerized Adaptive Testing (CAT) functions that are used in psychometrics.
Sample states from the Ising model and compute the probability of states. Sampling can be done for any number of nodes, but due to the intractibility of the Ising model the distribution can only be computed up to ~10 nodes.
This package implements an S7 class for estimates based on influence functions, with forward mode automatic differentiation defined for standard arithmetic operations.
Contain code to work with a C struct, in short cgeneric, to define a Gaussian Markov random (GMRF) model. The cgeneric contain code to specify GMRF elements such as the graph and the precision matrix, and also the initial and prior for its parameters, useful for model inference. It can be accessed from a C program and is the recommended way to implement new GMRF models in the INLA package (<https://www.r-inla.org>). The INLAtools implement functions to evaluate each one of the model specifications from R. The implemented functionalities leverage the use of cgeneric models and provide a way to debug the code as well to work with the prior for the model parameters and to sample from it. A very useful functionality is the Kronecker product method that creates a new model from multiple cgeneric models. It also works with the rgeneric, the R version of the cgeneric intended to easy try implementation of new GMRF models. The Kronecker between two cgeneric models was used in Sterrantino et. al. (2024) <doi:10.1007/s10260-025-00788-y>, and can be used to build the spatio-temporal intrinsic interaction models for what the needed constraints are automatically set.
Calculates various chance-corrected agreement coefficients (CAC) among 2 or more raters are provided. Among the CAC coefficients covered are Cohen's kappa, Conger's kappa, Fleiss kappa, Brennan-Prediger coefficient, Gwet's AC1/AC2 coefficients, and Krippendorff's alpha. Multiple sets of weights are proposed for computing weighted analyses. All of these statistical procedures are described in details in Gwet, K.L. (2014,ISBN:978-0970806284): "Handbook of Inter-Rater Reliability," 4th edition, Advanced Analytics, LLC.
Training datasets for iC10; which implements the classifier described in the paper Genome-driven integrated classification of breast cancer validated in over 7,500 samples (Ali HR et al., Genome Biology 2014). It uses copy number and/or expression form breast cancer data, trains a pamr classifier (Tibshirani et al.) with the features available and predicts the iC10 group. Genomic annotation for the training dataset has been obtained from Mark Dunning's lluminaHumanv3.db package.
For environmental chemists, ecologists, researchers and agricultural scientists to understand the dissipation kinetics, calculate the half-life periods and rate constants of compounds, pesticides, contaminants in different matrices.
The IDSL.FSA package was designed to annotate standard .msp (mass spectra format) and .mgf (Mascot generic format) files using mass spectral entropy similarity, dot product (cosine) similarity, and normalized Euclidean mass error (NEME) followed by intelligent pre-filtering steps for rapid spectra searches. IDSL.FSA also provides a number of modules to convert and manipulate .msp and .mgf files. The IDSL.FSA workflow was integrated in the IDSL.CSA and IDSL.NPA packages introduced in <doi:10.1021/acs.analchem.3c00376>.
Set of functions to impute missing rare earth data, calculate La and Pr concentrations and Ce anomalies in zircons based on the Chondrite-Onuma and Chondrite-Lattice of Carrasco-Godoy and Campbell (2023) <doi:10.1007/s00410-023-02025-9> and the Logarithmic regression from Zhong et al. (2019) <doi:10.1007/s00710-019-00682-y>.
This package provides functions read a dataframe containing one or more International Classification of Diseases Tenth Revision codes per subject. They return original data with injury categorizations and severity scores added.
Confidence intervals for causal effects, using data collected in different experimental or environmental conditions. Hidden variables can be included in the model with a more experimental version.