Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides classes and functions for metrics calculation as part of the EarthScope MUSTANG project. The functionality in this package builds upon the base classes of the IRISSeismic package. Metrics include basic statistics as well as higher level health metrics that can help identify problematic seismometers.
Collection of R functions to do purely presence-only species distribution modeling with isolation forest (iForest) and its variations such as Extended isolation forest and SCiForest. See the details of these methods in references: Liu, F.T., Ting, K.M. and Zhou, Z.H. (2008) <doi:10.1109/ICDM.2008.17>, Hariri, S., Kind, M.C. and Brunner, R.J. (2019) <doi:10.1109/TKDE.2019.2947676>, Liu, F.T., Ting, K.M. and Zhou, Z.H. (2010) <doi:10.1007/978-3-642-15883-4_18>, Guha, S., Mishra, N., Roy, G. and Schrijvers, O. (2016) <https://proceedings.mlr.press/v48/guha16.html>, Cortes, D. (2021) <doi:10.48550/arXiv.2110.13402>. Additionally, Shapley values are used to explain model inputs and outputs. See details in references: Shapley, L.S. (1953) <doi:10.1515/9781400881970-018>, Lundberg, S.M. and Lee, S.I. (2017) <https://dm-gatech.github.io/CS8803-Fall2018-DML-Papers/shapley.pdf>, Molnar, C. (2020) <ISBN:978-0-244-76852-2>, Å trumbelj, E. and Kononenko, I. (2014) <doi:10.1007/s10115-013-0679-x>. itsdm also provides functions to diagnose variable response, analyze variable importance, draw spatial dependence of variables and examine variable contribution. As utilities, the package includes a few functions to download bioclimatic variables including WorldClim version 2.0 (see Fick, S.E. and Hijmans, R.J. (2017) <doi:10.1002/joc.5086>) and CMCC-BioClimInd (see Noce, S., Caporaso, L. and Santini, M. (2020) <doi:10.1038/s41597-020-00726-5>.
This package provides a collection of utilities for columnwise summary, comparison and visualisation of data frames. Functions report missingness, categorical levels, numeric distribution, correlation, column types and memory usage.
This package provides user-friendly functions for programmatic access to macroeconomic data from the International Monetary Fund's SDMX 3.0 IMF Data API <https://data.imf.org/en/Resource-Pages/IMF-API>.
An implementation of the "FAST-9" corner detection algorithm explained in the paper FASTER and better: A machine learning approach to corner detection by Rosten E., Porter R. and Drummond T. (2008), available at <doi:10.48550/arXiv.0810.2434>. The package allows to detect corners in digital images.
This package provides a collection of Irucka Embry's miscellaneous USGS functions (processing .exp and .psf files, statistical error functions, "+" dyadic operator for use with NA, creating ADAPS and QW spreadsheet files, calculating saturated enthalpy). Irucka created these functions while a Cherokee Nation Technology Solutions (CNTS) United States Geological Survey (USGS) Contractor and/or USGS employee.
It performs interlaboratory studies (ILS) to detect those laboratories that provide non-consistent results when comparing to others. It permits to work simultaneously with various testing materials, from standard univariate, and functional data analysis (FDA) perspectives. The univariate approach based on ASTM E691-08 consist of estimating the Mandel's h and k statistics to identify those laboratories that provide more significant different results, testing also the presence of outliers by Cochran and Grubbs tests, Analysis of variance (ANOVA) techniques are provided (F and Tuckey tests) to test differences in means corresponding to different laboratories per each material. Taking into account the functional nature of data retrieved in analytical chemistry, applied physics and engineering (spectra, thermograms, etc.). ILS package provides a FDA approach for finding the Mandel's k and h statistics distribution by smoothing bootstrap resampling.
Computes and tests individual (species, phylogenetic and functional) diversity-area relationships, i.e., how species-, phylogenetic- and functional-diversity varies with spatial scale around the individuals of some species in a community. See applications of these methods in Wiegand et al. (2007) <doi:10.1073/pnas.0705621104> or Chacon-Labella et al. (2016) <doi:10.1007/s00442-016-3547-z>.
Tools, tutorials, and demos of Item Factor Analysis using OpenMx'. This software is described in Pritikin & Falk (2020) <doi:10.1177/0146621620929431>.
Containerizes cytometry data and allows for S4 class structure to extend slots related to cell morphology, spatial coordinates, phenotype network information, and unique cellular labeling.
This package provides a joint mixture model has been developed by Majumdar et al. (2025) <doi:10.48550/arXiv.2412.17511> that integrates information from gene expression data and methylation data at the modelling stage to capture their inherent dependency structure, enabling simultaneous identification of differentially methylated cytosine-guanine dinucleotide (CpG) sites and differentially expressed genes. The model leverages a joint likelihood function that accounts for the nested structure in the data, with parameter estimation performed using an expectation-maximisation algorithm.
This package provides an interface to the Instagram API <https://instagram.com/ developer/>, which allows R users to download public pictures filtered by hashtag, popularity, user or location, and to access public users profile data.
This package provides tools to extract information from the Intergovernmental Organizations ('IGO') Database (v3), provided by the Correlates of War Project <https://correlatesofwar.org/>. See also Pevehouse, J. C. et al. (2020) <doi:10.1177/0022343319881175>.
This package implements imputation methods using EM and Data Augmentation for multinomial data following the work of Schafer 1997 <ISBN: 978-0-412-04061-0>.
Calculate the injury severity score (ISS) based on the dictionary in ICDPIC from <https://ideas.repec.org/c/boc/bocode/s457028.html>. The original code was written in STATA 11'. The original STATA code was written by David Clark, Turner Osler and David Hahn. I implement the same logic for easier access. Ref: David E. Clark & Turner M. Osler & David R. Hahn, 2009. "ICDPIC: Stata module to provide methods for translating International Classification of Diseases (Ninth Revision) diagnosis codes into standard injury categories and/or scores," Statistical Software Components S457028, Boston College Department of Economics, revised 29 Oct 2010.
Generates Rd files from R source code with comments. The main features of the default syntax are that (1) docs are defined in comments near the relevant code, (2) function argument names are not repeated in comments, and (3) examples are defined in R code, not comments. It is also easy to define a new syntax.
Performing Item Response Theory analysis such as parameter estimation, ability estimation, data generation, item and model fit analyse, local independence assumption, dimensionality assumption, wright map, characteristic and information curves under various models with a user-friendly Graphic User Interface.
Facilitates fitting measurement error and missing data imputation models using integrated nested Laplace approximations, according to the method described in Skarstein, Martino and Muff (2023) <doi:10.1002/bimj.202300078>. See Skarstein and Muff (2024) <doi:10.48550/arXiv.2406.08172> for details on using the package.
Generates Personality Insights sunburst diagrams based on IBM Watson Personality Insights service output.
The IntCal20 radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided here in a single data package, together with previous IntCal curves (IntCal13, IntCal09, IntCal04, IntCal98) and postbomb curves. Also provided are functions to copy the curves into memory, and to plot the curves and their underlying data, as well as functions to calibrate radiocarbon dates.
Query for enriched data such as country, region, city, latitude & longitude, ZIP code, time zone, Autonomous System, Internet Service Provider, domain, net speed, International direct dialing (IDD) code, area code, weather station data, mobile data, elevation, usage type, address type, advertisement category, fraud score, and proxy data with an IP address. You can also query a list of hosted domain names for the IP address too. This package uses the IP2Location.io API to query this data. To get started with a free API key, sign up here <https://www.ip2location.io/sign-up?ref=1>.
This package provides functionality to perform a likelihood-free method for estimating the parameters of complex models that results in a simulated sample from the posterior distribution of model parameters given targets. The method begins with a accept/reject approximate bayes computation (ABC) step applied to a sample of points from the prior distribution of model parameters. Accepted points result in model predictions that are within the initially specified tolerance intervals around the target points. The sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions, accepting points within tolerance intervals. As the algorithm proceeds, the acceptance intervals are narrowed. The algorithm returns a set of points and sampling weights that account for the adaptive sampling scheme. For more details see Rutter, Ozik, DeYoreo, and Collier (2018) <arXiv:1804.02090>.
Implementation of tandem clustering with invariant coordinate selection with different scatter matrices and several choices for the selection of components as described in Alfons, A., Archimbaud, A., Nordhausen, K.and Ruiz-Gazen, A. (2024) <doi:10.1016/j.ecosta.2024.03.002>.
Plot idiograms of karyotypes, plasmids, circular chr. having a set of data.frames for chromosome data and optionally mark data. Two styles of chromosomes can be used: without or with visible chromatids. Supports micrometers, cM and Mb or any unit. Three styles of centromeres are available: triangle, rounded and inProtein; and six styles of marks are available: square (squareLeft), dots, cM (cMLeft), cenStyle, upArrow (downArrow), exProtein (inProtein); its legend (label) can be drawn inline or to the right of karyotypes. Idiograms can also be plotted in concentric circles. It is possible to calculate chromosome indices by Levan et al. (1964) <doi:10.1111/j.1601-5223.1964.tb01953.x>, karyotype indices of Watanabe et al. (1999) <doi:10.1007/PL00013869> and Romero-Zarco (1986) <doi:10.2307/1221906> and classify chromosomes by morphology Guerra (1986) and Levan et al. (1964).