Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes intervention in prediction measure for assessing variable importance for random forests. See details at I. Epifanio (2017) <DOI:10.1186/s12859-017-1650-8>.
This package provides a library for generic interval manipulations using a new interval vector class. Capabilities include: locating various kinds of relationships between two interval vectors, merging overlaps within a single interval vector, splitting an interval vector on its overlapping endpoints, and applying set theoretical operations on interval vectors. Many of the operations in this package were inspired by James Allen's interval algebra, Allen (1983) <doi:10.1145/182.358434>.
This package provides a toolbox for constructing potential landscapes for Ising networks. The parameters of the networks can be directly supplied by users or estimated by the IsingFit package by van Borkulo and Epskamp (2016) <https://CRAN.R-project.org/package=IsingFit> from empirical data. The Ising model's Boltzmann distribution is preserved for the potential landscape function. The landscape functions can be used for quantifying and visualizing the stability of network states, as well as visualizing the simulation process.
Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.
This package provides a simple wrapper around the ical.js library executing Javascript code via V8 (the Javascript engine driving the Chrome browser and Node.js and accessible via the V8 R package). This package enables users to parse iCalendar files ('.ics', .ifb', .iCal', .iFBf') into lists and data.frames to ultimately do statistics on events, meetings, schedules, birthdays, and the like.
This package provides tools to assess model fit and identify misfitting items for Rasch models (RM) and partial credit models (PCM). Included are item fit statistics, item characteristic curves, item-restscore association, conditional likelihood ratio tests, assessment of measurement error, estimates of the reliability and test targeting as described in Christensen et al. (Eds.) (2013, ISBN:978-1-84821-222-0).
Analyzing Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurement data to evaluate isotope ratios (IRs) is a complex process. The IsoCor package facilitates this process and renders it reproducible by providing a function to run a Shiny'-App locally in any web browser. In this App the user can upload data files of various formats, select ion traces, apply peak detection and perform calculation of IRs and delta values. Results are provided as figures and tables and can be exported. The App, therefore, facilitates data processing of ICP-MS experiments to quickly obtain optimal processing parameters compared to traditional Excel worksheet based approaches. A more detailed description can be found in the corresponding article <doi:10.1039/D2JA00208F>. The most recent version of IsoCor can be tested online at <https://apps.bam.de/shn00/IsoCor/>.
This package provides functions to facilitate inverse estimation (e.g., calibration) in linear, generalized linear, nonlinear, and (linear) mixed-effects models. A generic function is also provided for plotting fitted regression models with or without confidence/prediction bands that may be of use to the general user. For a general overview of these methods, see Greenwell and Schubert Kabban (2014) <doi:10.32614/RJ-2014-009>.
The itdr() routine allows for the estimation of sufficient dimension reduction subspaces in univariate regression such as the central mean subspace or central subspace in regression. This is achieved using Fourier transformation methods proposed by Zhu and Zeng (2006) <doi:10.1198/016214506000000140>, convolution transformation methods proposed by Zeng and Zhu (2010) <doi:10.1016/j.jmva.2009.08.004>, and iterative Hessian transformation methods proposed by Cook and Li (2002) <doi:10.1214/aos/1021379861>. Additionally, mitdr() function provides optimal estimators for sufficient dimension reduction subspaces in multivariate regression by optimizing a discrepancy function using a Fourier transform approach proposed by Weng and Yin (2022) <doi:10.5705/ss.202020.0312>, and selects the sufficient variables using Fourier transform sparse inverse regression estimators proposed by Weng (2022) <doi:10.1016/j.csda.2021.107380>.
Computes characteristics of independent rainfall events (duration, total rainfall depth, and intensity) extracted from a sub-daily rainfall time series based on the inter-event time definition (IETD) method. To have a reference value of IETD, it also analyzes/computes IETD values through three methods: autocorrelation analysis, the average annual number of events analysis, and coefficient of variation analysis. Ideal for analyzing the sensitivity of IETD to characteristics of independent rainfall events. Adams B, Papa F (2000) <ISBN: 978-0-471-33217-6>. Joo J et al. (2014) <doi:10.3390/w6010045>. Restrepo-Posada P, Eagleson P (1982) <doi:10.1016/0022-1694(82)90136-6>.
Implementation of the methodology proposed in Data-driven design of targeted gene panels for estimating immunotherapy biomarkers', Bradley and Cannings (2021) <arXiv:2102.04296>. This package allows the user to fit generative models of mutation from an annotated mutation dataset, and then further to produce tunable linear estimators of exome-wide biomarkers. It also contains functions to simulate mutation annotated format (MAF) data, as well as to analyse the output and performance of models.
Perform fast and memory efficient time-weighted averaging of values measured over intervals into new arbitrary intervals. This package is useful in the context of data measured or represented as constant values over intervals on a one-dimensional discrete axis (e.g. time-integrated averages of a curve over defined periods). This package was written specifically to deal with air pollution data recorded or predicted as averages over sampling periods. Data in this format often needs to be shifted to non-aligned periods or averaged up to periods of longer duration (e.g. averaging data measured over sequential non-overlapping periods to calendar years).
Advanced fuzzy logic based techniques are implemented to compute the similarity among different objects or items. Typically, application areas consist of transforming raw data into the corresponding advanced fuzzy logic representation and determining the similarity between two objects using advanced fuzzy similarity techniques in various fields of research, such as text classification, pattern recognition, software projects, decision-making, medical diagnosis, and market prediction. Functions are designed to compute the membership, non-membership, hesitant-membership, indeterminacy-membership, and refusal-membership for the input matrices. Furthermore, it also includes a large number of advanced fuzzy logic based similarity measure functions to compute the Intuitionistic fuzzy similarity (IFS), Pythagorean fuzzy similarity (PFS), and Spherical fuzzy similarity (SFS) between two objects or items based on their fuzzy relationships. It also includes working examples for each function with sample data sets.
Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (<https://www.r-inla.org>). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) <doi:10.1111/2041-210X.13168>.
Interactive dendrogram that enables the user to select and color clusters, to zoom and pan the dendrogram, and to visualize the clustered data not only in a built-in heat map, but also in GGobi interactive plots and user-supplied plots. This is a backport of Qt-based idendro (<https://github.com/tsieger/idendro>) to base R graphics and Tcl/Tk GUI.
Download ifo business survey data and more time series from ifo institute <https://www.ifo.de/en/ifo-time-series>.
Multiple Imputation for Informative Censoring. This package implements two methods. Gamma Imputation described in <DOI:10.1002/sim.6274> and Risk Score Imputation described in <DOI:10.1002/sim.3480>.
Semiparametric regression models on the cumulative incidence function for interval-censored competing risks data as described in Bakoyannis, Yu, & Yiannoutsos (2017) /doi10.1002/sim.7350 and the models with missing event types as described in Park, Bakoyannis, Zhang, & Yiannoutsos (2021) \doi10.1093/biostatistics/kxaa052. The proportional subdistribution hazards model (Fine-Gray model), the proportional odds model, and other models that belong to the class of semiparametric generalized odds rate transformation models.
This package provides tools for parsing NOAA Integrated Surface Data ('ISD') files, described at <https://www.ncdc.noaa.gov/isd>. Data includes for example, wind speed and direction, temperature, cloud data, sea level pressure, and more. Includes data from approximately 35,000 stations worldwide, though best coverage is in North America/Europe/Australia. Data is stored as variable length ASCII character strings, with most fields optional. Included are tools for parsing entire files, or individual lines of data.
Two functions for running and then post-estimating an Interrupted Time Series Analysis model. This is a solution for running time series analyses on temporally short data. See English (2019) The its.analysis R package - Modelling short time series data <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3398189> for an overview of the method.
Calculation of key bacterial growth curve parameters using fourth degree polynomial functions. Six growth curve parameters are provided including peak growth rate, doubling time, lag time, maximum growth, and etc. ipolygrowth takes time series data from individual biological samples (with technical replicates) or multiple samples.
Graphical User Interface allowing to determine the concentration in the sample in CFU per mL or in number of copies per mL provided to qPCR results after with or without PMA treatment. This package is simply to use because no knowledge in R commands is necessary. A graphic represents the standard curve, and a table containing the result for each sample is created.
An imprecise inference presented in the study of Walley (1996) <doi:10.1111/j.2517-6161.1996.tb02065.x> is one of the statistical reasoning methods when prior information is unavailable. Functions and utils needed for illustrating this inferential paradigm are implemented for classroom teaching and further comprehensive research. Two imprecise models are demonstrated using multinomial data and 2x2 contingency table data. The concepts of prior ignorance and imprecision are discussed in lower and upper probabilities. Representation invariance principle, hypothesis testing, decision-making, and further generalization are also illustrated.
This package provides functions to support the ICES Transparent Assessment Framework <https://taf.ices.dk> to organize data, methods, and results used in ICES assessments. ICES is an organization facilitating international collaboration in marine science.