Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for estimating uncertainty in individual polygenic risk scores (PRSs) using both sampling-based and analytical methods, as well as the Best Linear Unbiased Estimator (BLUE). These methods quantify variability in PRS estimates for both binary and quantitative traits. See Henderson (1975) <doi:10.2307/2529430> for more details.
This package provides functions for evaluating and testing asset pricing models, including estimation and testing of factor risk premia, selection of "strong" risk factors (factors having nonzero population correlation with test asset returns), heteroskedasticity and autocorrelation robust covariance matrix estimation and testing for model misspecification and identification. The functions for estimating and testing factor risk premia implement the Fama-MachBeth (1973) <doi:10.1086/260061> two-pass approach, the misspecification-robust approaches of Kan-Robotti-Shanken (2013) <doi:10.1111/jofi.12035>, and the approaches based on tradable factor risk premia of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683>. The functions for selecting the "strong" risk factors are based on the Oracle estimator of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683> and the factor screening procedure of Gospodinov-Kan-Robotti (2014) <doi:10.2139/ssrn.2579821>. The functions for evaluating model misspecification implement the HJ model misspecification distance of Kan-Robotti (2008) <doi:10.1016/j.jempfin.2008.03.003>, which is a modification of the prominent Hansen-Jagannathan (1997) <doi:10.1111/j.1540-6261.1997.tb04813.x> distance. The functions for testing model identification specialize the Kleibergen-Paap (2006) <doi:10.1016/j.jeconom.2005.02.011> and the Chen-Fang (2019) <doi:10.1111/j.1540-6261.1997.tb04813.x> rank test to the regression coefficient matrix of test asset returns on risk factors. Finally, the function for heteroskedasticity and autocorrelation robust covariance estimation implements the Newey-West (1994) <doi:10.2307/2297912> covariance estimator.
Analyzing Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurement data to evaluate isotope ratios (IRs) is a complex process. The IsoCor package facilitates this process and renders it reproducible by providing a function to run a Shiny'-App locally in any web browser. In this App the user can upload data files of various formats, select ion traces, apply peak detection and perform calculation of IRs and delta values. Results are provided as figures and tables and can be exported. The App, therefore, facilitates data processing of ICP-MS experiments to quickly obtain optimal processing parameters compared to traditional Excel worksheet based approaches. A more detailed description can be found in the corresponding article <doi:10.1039/D2JA00208F>. The most recent version of IsoCor can be tested online at <https://apps.bam.de/shn00/IsoCor/>.
This package provides a non-parametric effect size measure capturing changes in central tendency or shape of data distributions. The package provides the necessary functions to calculate and plot the Impact effect size measure between two groups.
Implementation of a KL-based scoring rule to assess the quality of different missing value imputations in the broad sense as introduced in Michel et al. (2021) <arXiv:2106.03742>.
Pull data from the Impect Customer API <https://glossary.impect.com/api-design>. The package can retrieve data such as events or match sums.
This package implements Interpretable Boosted Linear Models (IBLMs). These combine a conventional generalized linear model (GLM) with a machine learning component, such as XGBoost. The package also provides tools within for explaining and analyzing these models. For more details see Gawlowski and Wang (2025) <https://ifoa-adswp.github.io/IBLM/reference/figures/iblm_paper.pdf>.
This package provides a systematic framework for integrating multiple modalities of assays profiled on the same set of samples. The goal is to identify genes that are altered in cancer either marginally or consistently across different assays. The heterogeneity among different platforms and different samples are automatically adjusted so that the overall alteration magnitude can be accurately inferred. See Tong and Coombes (2012) <doi:10.1093/bioinformatics/bts561>.
Code to specify, run, and then visualize and analyze the results of Ixodidae (hard-bodied ticks) population and infection dynamics models. Such models exist in the literature, but the source code to run them is not always available. IxPopDyMod provides an easy way for these models to be written and shared.
The proportion of cancer cells in solid tumor sample, known as the tumor purity, has adverse impact on a variety of data analyses if not properly accounted for. We develop InfiniumPurify', which is a comprehensive R package for estimating and accounting for tumor purity based on DNA methylation Infinium 450k array data. InfiniumPurify provides functionalities for tumor purity estimation. In addition, it can perform differential methylation detection and tumor sample clustering with the consideration of tumor purities.
R interface to access the web services of the ICES (International Council for the Exploration of the Sea) DATRAS trawl survey database <https://datras.ices.dk/WebServices/Webservices.aspx>.
Get image statistics based on processing fluency theory. The functions provide scores for several basic aesthetic principles that facilitate fluent cognitive processing of images: contrast, complexity / simplicity, self-similarity, symmetry, and typicality. See Mayer & Landwehr (2018) <doi:10.1037/aca0000187> and Mayer & Landwehr (2018) <doi:10.31219/osf.io/gtbhw> for the theoretical background of the methods.
Compute onestep and multistep time series forecasts for machine learning models.
Calculates point estimates and standard errors using replicate weights and plausible values for International Large-Scale Assessments (ILSA), including: means, proportions, quantiles, correlations, singlelevel regressions, and multilevel regressions.
Simulation of the random evolution of heterogeneous populations using stochastic Individual-Based Models (IBMs) <doi:10.48550/arXiv.2303.06183>. The package enables users to simulate population evolution, in which individuals are characterized by their age and some characteristics, and the population is modified by different types of events, including births/arrivals, death/exit events, or changes of characteristics. The frequency at which an event can occur to an individual can depend on their age and characteristics, but also on the characteristics of other individuals (interactions). Such models have a wide range of applications. For instance, IBMs can be used for simulating the evolution of a heterogeneous insurance portfolio with selection or for validating mortality forecasts. This package overcomes the limitations of time-consuming IBMs simulations by implementing new efficient algorithms based on thinning methods, which are compiled using the Rcpp package while providing a user-friendly interface.
Enables the user to find the country, region, district, city, coordinates, zip code, time zone, ISP, domain name, connection type, area code, weather, Mobile Country Code, Mobile Network Code, mobile brand name, elevation, usage type, address type, IAB category and Autonomous system information that any IP address or hostname originates from. Supported IPv4 and IPv6. Please visit <https://www.ip2location.com> to learn more. You may also want to visit <https://lite.ip2location.com> for free database download. This package requires IP2Location Python module. At the terminal, please run pip install IP2Location to install the module.
This package implements the Interval Consensus Model (ICM) for analyzing continuous bounded interval-valued responses in psychometrics using Stan for Bayesian estimation. Provides functions for transforming interval data to simplex representations, fitting item response theory (IRT) models with isometric log-ratio (ILR) and sum log-ratio (SLR) link functions, and visualizing results. The package enables aggregation and analysis of interval-valued response data commonly found in psychological measurement and related disciplines. Based on Kloft et al. (2024) <doi:10.31234/osf.io/dzvw2>.
Used in testing if the indirect effect from linear regression mediation analysis is equal to 0. Includes established methods such as the Sobel Test, Joint Significant test (maxP), and tests based off the distribution of the Product or Normal Random Variables. Additionally, this package adds more powerful tests based on Intersection-Union theory. These tests are the S-Test, the ps-test, and the ascending squares test. These new methods are uniformly more powerful than maxP, which is more powerful than Sobel and less anti-conservative than the Product of Normal Random Variables. These methods are explored by Kidd and Lin, (2024) <doi:10.1007/s12561-023-09386-6> and Kidd et al., (2025) <doi:10.1007/s10260-024-00777-7>.
We consider the non-parametric maximum likelihood estimation of the underlying distribution function, assuming log-concavity, based on mixed-case interval-censored data. The algorithm implemented is base on Chi Wing Chu, Hok Kan Ling and Chaoyu Yuan (2024, <doi:10.48550/arXiv.2411.19878>).
Suite of functions that help simulate elections under different electoral systems, which are then used to compute incentives generated by these systems in terms of the inter- and intra-party dimensions of electoral competition.
This package provides a voxel is a representation of a value on a regular, three-dimensional grid; it is the 3D equivalent of a 2D pixel. Voxel data can be visualised with this package using fixed viewpoint isometric cubes for each data point. This package also provides sample voxel data and tools for transforming the data.
Simple handling of survey data. Smart handling of meta-information like e.g. variable-labels value-labels and scale-levels. Easy access and validation of meta-information. Useage of value labels and values respectively for subsetting and recoding data.
This package provides tools for assessment and quantification of individual identity information in animal signals. This package accompanies a research article by Linhart et al. (2019) <doi:10.1101/546143>: "Measuring individual identity information in animal signals: Overview and performance of available identity metrics".
This package provides a joint mixture model has been developed by Majumdar et al. (2025) <doi:10.48550/arXiv.2412.17511> that integrates information from gene expression data and methylation data at the modelling stage to capture their inherent dependency structure, enabling simultaneous identification of differentially methylated cytosine-guanine dinucleotide (CpG) sites and differentially expressed genes. The model leverages a joint likelihood function that accounts for the nested structure in the data, with parameter estimation performed using an expectation-maximisation algorithm.