Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to standardize and whiten data, and to perform Principal Component Analysis (PCA). The main advantage of this package over alternatives like prcomp() is, that jvcoords makes it easy to convert (additional) data between the original and the transformed coordinates. The package also provides a class coords, which can represent affine coordinate transformations. This class forms the basis of the transformations provided by the package, but can also be used independently. The implementation has been optimized to be of comparable speed (and sometimes even faster) than existing alternatives.
Analysis of repeated measurements and time-to-event data via random effects joint models. Fits the joint models proposed by Henderson and colleagues <doi:10.1093/biostatistics/1.4.465> (single event time) and by Williamson and colleagues (2008) <doi:10.1002/sim.3451> (competing risks events time) to a single continuous repeated measure. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-varying covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by a latent Gaussian process. The model is estimated using am Expectation Maximization algorithm. Some plotting functions and the variogram are also included. This project is funded by the Medical Research Council (Grant numbers G0400615 and MR/M013227/1).
This package provides tools to explore and summarize relationship patterns between variables across one or multiple datasets. The package relies on efficient sampling strategies to estimate pairwise associations and supports quick exploratory data analysis for large or heterogeneous data sources.
This package provides data about the possible adverse events/reactions resulting from being injected with a vaccine/experimental gene therapy. Currently, this data set only includes information from six reference sources. Refer to the CITATION.cff file for the complete citations of the reference sources. For information about vaccination$/immunization$ hazards, visit <https://www.questionuniverse.com/rethink.html#vaccine>, <https://www.ecoccs.com/healing.html#vaccines>, <https://www.questionuniverse.com/rethink_current_crisis.html#cov_vaccin>, and <https://www.questionuniverse.com/vaccination.html>.
Helpful functions for using mesh code (80km to 100m) data in Japan. Visualize mesh code using ggplot2 and leaflet', etc.
Estimation of extended joint models with shared random effects. Longitudinal data are handled in latent process models for continuous (Gaussian or curvilinear) and ordinal outcomes while proportional hazard models are used for the survival part. We propose a frequentist approach using maximum likelihood estimation. See Saulnier et al, 2022 <doi:10.1016/j.ymeth.2022.03.003>.
This package provides tools are provided to streamline Bayesian analyses in JAGS using the jagsUI package. Included are functions for extracting output in simpler format, functions for streamlining assessment of convergence, and functions for producing summary plots of output. Also included is a function that provides a simple template for running JAGS from R'. Referenced materials can be found at <DOI:10.1214/ss/1177011136>.
This package provides a calculation tool to obtain the 5-year or 10-year risk of cardiovascular disease from various risk models.
This package performs power calculations for joint modeling of longitudinal and survival data with k-th order trajectories when the variance-covariance matrix, Sigma_theta, is unknown.
Implementation of some unit and area level EBLUP estimators as well as the estimators of their MSE also under heteroscedasticity. The package further documents the publications Breidenbach and Astrup (2012) <DOI:10.1007/s10342-012-0596-7>, Breidenbach et al. (2016) <DOI:10.1016/j.rse.2015.07.026> and Breidenbach et al. (2018 in press). The vignette further explains the use of the implemented functions.
The Jalaali calendar, also known as the Persian or Solar Hijri calendar, is the official calendar of Iran and Afghanistan. It starts on Nowruz, the spring equinox, and follows an astronomical system for determining leap years. Each year consists of 365 or 366 days, divided into 12 months. This package provides functions for converting dates between the Jalaali and Gregorian calendars. The conversion calculations are based on the work of Kazimierz M. Borkowski (1996) (<doi:10.1007/BF00055188>), who used an analytical model of Earth's motion to compute equinoxes from AD 550 to 3800 and determine leap years based on Tehran time.
Takes an R expression and returns a job object with a $stop() method which can be called to terminate the background job. Also provides timeouts and other mechanisms for automatically terminating a background job. The result of the expression is available synchronously via $result or asynchronously with callbacks or through the promises package framework.
Shared parameter models for the joint modeling of longitudinal and time-to-event data.
This package provides methods for fast segmentation of multivariate signals into piecewise constant profiles and for generating realistic copy-number profiles. A typical application is the joint segmentation of total DNA copy numbers and allelic ratios obtained from Single Nucleotide Polymorphism (SNP) microarrays in cancer studies. The methods are described in Pierre-Jean, Rigaill and Neuvial (2015) <doi:10.1093/bib/bbu026>.
Automatic disaggregation of small-area population estimates by demographic groups (e.g., age, sex, race, marital status, educational level, etc) along with the estimates of uncertainty, using advanced Bayesian statistical modelling approaches based on integrated nested Laplace approximation (INLA) Rue et al. (2009) <doi:10.1111/j.1467-9868.2008.00700.x> and stochastic partial differential equation (SPDE) methods Lindgren et al. (2011) <doi:10.1111/j.1467-9868.2011.00777.x>. The package implements hierarchical Bayesian modeling frameworks for small area estimation as described in Leasure et al. (2020) <doi:10.1073/pnas.1913050117> and Nnanatu et al. (2025) <doi:10.1038/s41467-025-59862-4>.
An R package that implements the JICO algorithm [Wang, P., Wang, H., Li, Q., Shen, D., & Liu, Y. (2024). <Journal of Computational and Graphical Statistics, 33(3), 763-773>]. It aims at solving the multi-group regression problem. The algorithm decomposes the responses from multiple groups into shared and group-specific components, which are driven by low-rank approximations of joint and individual structures from the covariates respectively.
This package provides a GUI interface for automating data extraction from multiple images containing scatter and bar plots, semi-automated tools to tinker with extraction attempts, and a fully-loaded point-and-click manual extractor with image zoom, calibrator, and classifier. Also provides detailed and R-independent extraction reports as fully-embedded .html records.
This package contains procedures to estimate the nine condensed Jacquard genetic identity coefficients (Jacquard, 1974) <doi:10.1007/978-3-642-88415-3> by constrained least squares (Graffelman et al., 2024) <doi:10.1101/2024.03.25.586682> and by the method of moments (Csuros, 2014) <doi:10.1016/j.tpb.2013.11.001>. These procedures require previous estimation of the allele frequencies. Functions are supplied that estimate relationship parameters that derive from the Jacquard coefficients, such as individual inbreeding coefficients and kinship coefficients.
Aids in the calculation and visualization of regions of non-significance using the Johnson-Neyman technique and its extensions as described by Bauer and Curran (2005) <doi:10.1207/s15327906mbr4003_5> to assess the influence of categorical and continuous moderators. Allows correcting for phylogenetic relatedness.
Offer procedures to download financial-economic time series data and enhanced procedures for computing the investment performance indices of Bacon (2004) <DOI:10.1002/9781119206309>.
Different algorithms to perform approximate joint diagonalization of a finite set of square matrices. Depending on the algorithm, orthogonal or non-orthogonal diagonalizer is found. These algorithms are particularly useful in the context of blind source separation. Original publications of the algorithms can be found in Ziehe et al. (2004), Pham and Cardoso (2001) <doi:10.1109/78.942614>, Souloumiac (2009) <doi:10.1109/TSP.2009.2016997>, Vollgraff and Obermayer <doi:10.1109/TSP.2006.877673>. An example of application in the context of Brain-Computer Interfaces EEG denoising can be found in Gouy-Pailler et al (2010) <doi:10.1109/TBME.2009.2032162>.
Download and post process the infectious disease case data from Japan Institute for Health Security. Also the package included ready-to-analyse datasets. See the data source website for further details <https://id-info.jihs.go.jp/>.
Fit latent space network cluster models using an expectation-maximization algorithm. Enables flexible modeling of unweighted or weighted network data (with or without noise edges), supporting both directed and undirected networks (with or without degree and strength heterogeneity). Designed to handle large networks efficiently, it allows users to explore network structure through latent space representations, identify clusters (i.e., community detection) within network data, and simulate networks with varying clustering, connectivity patterns, and noise edges. Methodology for the implementation is described in Arakkal and Sewell (2025) <doi:10.1016/j.csda.2025.108228>.
Since the reference management software (such as Zotero', Mendeley') exports Bib file journal abbreviation is not detailed enough, the journalabbr package only abbreviates the journal field of Bib file, and then outputs a new Bib file for generating reference format with journal abbreviation on other software (such as texstudio'). The abbreviation table is from JabRef'. At the same time, Shiny application is provided to generate thebibliography', a reference format that can be directly used for latex paper writing based on Rmd files.