Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the model in Steorts (2015) <DOI:10.1214/15-BA965SI>, which performs Bayesian entity resolution for categorical and text data, for any distance function defined by the user. In addition, the precision and recall are in the package to allow one to compare to any other comparable method such as logistic regression, Bayesian additive regression trees (BART), or random forests. The experiments are reproducible and illustrated using a simple vignette. LICENSE: GPL-3 + file license.
This package implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more.
This package provides a collection of functions to test spatial autocorrelation between variables, including Moran I, Geary C and Getis G together with scatter plots, functions for mapping and identifying clusters and outliers, functions associated with the moments of the previous statistics that will allow testing whether there is bivariate spatial autocorrelation, and a function that allows identifying (visualizing neighbours) on the map, the neighbors of any region once the scheme of the spatial weights matrix has been established.
This package provides a wrapper around the Blat command line SMTP mailer for Windows. Blat is public domain software, but be sure to read the license before use. It can be found at the Blat website http://www.blat.net.
Facilitates some of the analyses performed in studies of behavioral economic discounting. The package supports scoring of the 27-Item Monetary Choice Questionnaire (see Kaplan et al., 2016; <doi:10.1007/s40614-016-0070-9>), calculating k values (Mazur's simple hyperbolic and exponential) using nonlinear regression, calculating various Area Under the Curve (AUC) measures, plotting regression curves for both fit-to-group and two-stage approaches, checking for unsystematic discounting (Johnson & Bickel, 2008; <doi:10.1037/1064-1297.16.3.264>) and scoring of the minute discounting task (see Koffarnus & Bickel, 2014; <doi:10.1037/a0035973>) using the Qualtrics 5-trial discounting template (see the Qualtrics Minute Discounting User Guide; <doi:10.13140/RG.2.2.26495.79527>), which is also available as a .qsf file in this package.
This package performs brace expansions on strings. Made popular by Unix shells, brace expansion allows users to concisely generate certain character vectors by taking a single string and (recursively) expanding the comma-separated lists and double-period-separated integer and character sequences enclosed within braces in that string. The double-period-separated numeric integer expansion also supports padding the resulting numbers with zeros.
Tool to find where a function has its lowest value(minimum). The functions can be any dimensions. Recommended use is with eps=10^-10, but can be run with 10^-20, although this depends on the function. Two more methods are in this package, simple gradient method (Gradmod) and Powell method (Powell). These are not recommended for use, their purpose are purely for comparison.
Bayesian regularization for feed-forward neural networks.
The proposed event-driven approach for Bayesian two-stage single-arm phase II trial design is a novel clinical trial design and can be regarded as an extension of the Simonâ s two-stage design with the time-to-event endpoint. This design is motivated by cancer clinical trials with immunotherapy and molecularly targeted therapy, in which time-to-event endpoint is often a desired endpoint.
Select balanced and spatially balanced probability samples in multi-dimensional spaces with any prescribed inclusion probabilities. It contains fast (C++ via Rcpp) implementations of the included sampling methods. The local pivotal method by Grafström, Lundström and Schelin (2012) <doi:10.1111/j.1541-0420.2011.01699.x> and spatially correlated Poisson sampling by Grafström (2012) <doi:10.1016/j.jspi.2011.07.003> are included. Also the cube method (for balanced sampling) and the local cube method (for doubly balanced sampling) are included, see Grafström and Tillé (2013) <doi:10.1002/env.2194>.
Waffle plots are rectangular pie charts that represent a quantity or abundances using colored squares or other symbol. This makes them better at transmitting information as the discrete number of squares is easier to read than the circular area of pie charts. While the original waffle charts were rectangular with 10 rows and columns, with a single square representing 1%, they are nowadays popular in various infographics to visualize any proportional ratios.
Bayesian fitting and sensitivity analysis methods for adaptive spline surfaces described in <doi:10.18637/jss.v094.i08>. Built to handle continuous and categorical inputs as well as functional or scalar output. An extension of the methodology in Denison, Mallick and Smith (1998) <doi:10.1023/A:1008824606259>.
This package implements efficient NumPy'-like broadcasted operations for atomic and recursive arrays. In the context of operations involving 2 (or more) arrays, â broadcastingâ refers to efficiently recycling array dimensions, without making copies. Besides linking to Rcpp', broadcast does not use any external libraries in any way; broadcast was essentially made from scratch and can be installed out-of-the-box. The implementations available in broadcast include, but are not limited to, the following. 1) Broadcasted element-wise operations on any 2 arrays; they support a large set of relational, arithmetic, Boolean, string, and bit-wise operations. 2) A faster, more memory efficient, and broadcasted abind-like function, for binding arrays along an arbitrary dimension. 3) Broadcasted ifelse-like and apply-like functions. 4) Casting functions, that cast subset-groups of an array to a new dimension, cast nested lists to dimensional lists, and vice-versa. 5) A few linear algebra functions for statistics. The functions in the broadcast package strive to minimize computation time and memory usage (which is not just better for efficient computing, but also for the environment).
We perform general mediation analysis in the Bayesian setting using the methods described in Yu and Li (2022, ISBN:9780367365479). With the package, the mediation analysis can be performed on different types of outcomes (e.g., continuous, binary, categorical, or time-to-event), with default or user-defined priors and predictive models. The Bayesian estimates and credible sets of mediation effects are reported as analytic results.
Investigating and visualising Bayesian Additive Regression Tree (BART) (Chipman, H. A., George, E. I., & McCulloch, R. E. 2010) <doi:10.1214/09-AOAS285> model fits. We construct conventional plots to analyze a modelâ s performance and stability as well as create new tree-based plots to analyze variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our visualisations are designed to work with the most popular BART R packages available, namely BART Rodney Sparapani and Charles Spanbauer and Robert McCulloch 2021 <doi:10.18637/jss.v097.i01>, dbarts (Vincent Dorie 2023) <https://CRAN.R-project.org/package=dbarts>, and bartMachine (Adam Kapelner and Justin Bleich 2016) <doi:10.18637/jss.v070.i04>.
Bayesian synthetic likelihood (BSL, Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) is an alternative to standard, non-parametric approximate Bayesian computation (ABC). BSL assumes a multivariate normal distribution for the summary statistic likelihood and it is suitable when the distribution of the model summary statistics is sufficiently regular. This package provides a Metropolis Hastings Markov chain Monte Carlo implementation of four methods (BSL, uBSL, semiBSL and BSLmisspec) and two shrinkage estimators (graphical lasso and Warton's estimator). uBSL (Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) uses an unbiased estimator to the normal density. A semi-parametric version of BSL (semiBSL, An et al. (2018) <arXiv:1809.05800>) is more robust to non-normal summary statistics. BSLmisspec (Frazier et al. 2019 <arXiv:1904.04551>) estimates the Gaussian synthetic likelihood whilst acknowledging that there may be incompatibility between the model and the observed summary statistic. Shrinkage estimation can help to decrease the number of model simulations when the dimension of the summary statistic is high (e.g., BSLasso, An et al. (2019) <doi:10.1080/10618600.2018.1537928>). Extensions to this package are planned. For a journal article describing how to use this package, see An et al. (2022) <doi:10.18637/jss.v101.i11>.
This package provides a family of novel beta mixture models (BMMs) has been developed by Majumdar et al. (2022) <doi:10.48550/arXiv.2211.01938> to appositely model the beta-valued cytosine-guanine dinucleotide (CpG) sites, to objectively identify methylation state thresholds and to identify the differentially methylated CpG (DMC) sites using a model-based clustering approach. The family of beta mixture models employs different parameter constraints applicable to different study settings. The EM algorithm is used for parameter estimation, with a novel approximation during the M-step providing tractability and ensuring computational feasibility.
This package provides a function for estimating the parameters of Structural Bayesian Vector Autoregression models with the method developed by Baumeister and Hamilton (2015) <doi:10.3982/ECTA12356>, Baumeister and Hamilton (2017) <doi:10.3386/w24167>, and Baumeister and Hamilton (2018) <doi:10.1016/j.jmoneco.2018.06.005>. Functions for plotting impulse responses, historical decompositions, and posterior distributions of model parameters are also provided.
This package contains tools to fit both predictive and prognostic biomarker effects using biomarker threshold models and continuous threshold models. Evaluate the treatment effect, biomarker effect and treatment-biomarker interaction using probability index measurement. Test for treatment-biomarker interaction using residual bootstrap method.
Simulation and parameter estimation of multitype Bienayme - Galton - Watson processes.
This package provides tools for the calculation of common biodiversity indices from count data. Additionally, it incorporates bootstrapping techniques to generate multiple samples, facilitating the estimation of confidence intervals around these indices. Furthermore, the package allows for the exploration of how variation in these indices changes with differing numbers of sites, making it a useful tool with which to begin an ecological analysis. Methods are based on the following references: Chao et al. (2014) <doi:10.1890/13-0133.1>, Chao and Colwell (2022) <doi:10.1002/9781119902911.ch2>, Hsieh, Ma,` and Chao (2016) <doi:10.1111/2041-210X.12613>.
Enable users to evaluate long-term trends using a Generalized Additive Modeling (GAM) approach. The model development includes selecting a GAM structure to describe nonlinear seasonally-varying changes over time, incorporation of hydrologic variability via either a river flow or salinity, the use of an intervention to deal with method or laboratory changes suspected to impact data values, and representation of left- and interval-censored data. The approach has been applied to water quality data in the Chesapeake Bay, a major estuary on the east coast of the United States to provide insights to a range of management- and research-focused questions. Methodology described in Murphy (2019) <doi:10.1016/j.envsoft.2019.03.027>.
The R-package bayespm implements Bayesian Statistical Process Control and Monitoring (SPC/M) methodology. These methods utilize available prior information and/or historical data, providing efficient online quality monitoring of a process, in terms of identifying moderate/large transient shifts (i.e., outliers) or persistent shifts of medium/small size in the process. These self-starting, sequentially updated tools can also run under complete absence of any prior information. The Predictive Control Charts (PCC) are introduced for the quality monitoring of data from any discrete or continuous distribution that is a member of the regular exponential family. The Predictive Ratio CUSUMs (PRC) are introduced for the Binomial, Poisson and Normal data (a later version of the library will cover all the remaining distributions from the regular exponential family). The PCC targets transient process shifts of typically large size (a.k.a. outliers), while PRC is focused in detecting persistent (structural) shifts that might be of medium or even small size. Apart from monitoring, both PCC and PRC provide the sequentially updated posterior inference for the monitored parameter. Bourazas K., Kiagias D. and Tsiamyrtzis P. (2022) "Predictive Control Charts (PCC): A Bayesian approach in online monitoring of short runs" <doi:10.1080/00224065.2021.1916413>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Predictive ratio CUSUM (PRC): A Bayesian approach in online change point detection of short runs" <doi:10.1080/00224065.2022.2161434>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Design and properties of the predictive ratio cusum (PRC) control charts" <doi:10.1080/00224065.2022.2161435>.
Routine for fitting regression models for binary rare events with linear and nonlinear covariate effects when using the quantile function of the Generalized Extreme Value random variable.