Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements Bayesian inference to detect signal from blinded clinical trial when total number of adverse events of special concerns and total risk exposures from all patients are available in the study. For more details see the article by Mukhopadhyay et. al. (2018) titled Bayesian Detection of Potential Risk Using Inference on Blinded Safety Data', in Pharmaceutical Statistics (to appear).
The shiny application bdDwC makes biodiversity data field names Darwin Core compatible.
Interact with the Brandwatch API <https://developers.brandwatch.com/docs>. Allows you to authenticate to the API and obtain data for projects, queries, query groups tags and categories. Also allows you to directly obtain mentions and aggregate data for a specified query or query group.
Reads several formats of 13C data (IRIS/Wagner, BreathID) and CSV. Creates artificial sample data for testing. Fits Maes/Ghoos, Bluck-Coward self-correcting formula using nls', nlme'. Methods to fit breath test curves with Bayesian Stan methods are refactored to package breathteststan'. For a Shiny GUI, see package dmenne/breathtestshiny on github.
Bayesian Latent Class Analysis using several different methods.
Parse a BibTeX file to a data.frame to make it accessible for further analysis and visualization.
Making probabilistic projections of life expectancy for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-012-0193-x>. Subnational projections are also supported.
This package contains all the necessary tools to process audio recordings of various formats (e.g., WAV, WAC, MP3, ZC), filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as classification.
Miscellaneous R functions, including functions related to graphics (mostly for base graphics), permutation tests, running mean/median, and general utilities.
Various layers of B.C., including administrative boundaries, natural resource management boundaries, census boundaries etc. All layers are available in BC Albers (<https://spatialreference.org/ref/epsg/3005/>) equal-area projection, which is the B.C. government standard. The layers are sourced from the British Columbia and Canadian government under open licenses, including B.C. Data Catalogue (<https://data.gov.bc.ca>), the Government of Canada Open Data Portal (<https://open.canada.ca/en/using-open-data>), and Statistics Canada (<https://www.statcan.gc.ca/en/reference/licence>).
Stan-based curve-fitting function for use with package breathtestcore by the same author. Stan functions are refactored here for easier testing.
This package implements a data-augmented block Gibbs sampler for simulating the posterior distribution of concentration matrices for specifying the topology and parameterization of a Gaussian Graphical Model (GGM). This sampler was originally proposed in Wang (2012) <doi:10.1214/12-BA729>.
Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for proportional hazards models with piecewise constant hazard. The methodology and examples of applying the package are detailed in <doi:10.48550/arXiv.2404.05118>. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The proportional hazards model with piecewise constant hazard is detailed in Ibrahim et al. (2001) <doi:10.1007/978-1-4757-3447-8>.
This package provides a beginners toolbox to help those in ecology who want to deepen their understanding or utilize Bioacoustics in their work. The package has a number of utilizations from calculating frequency from waveform, performing operations in dB, and determining acoustic range of recorders. The majority of this package is based on key concepts learned from the K. Lisa Yang Center for Conservation Bioacoustics at Cornell University and their associated course: Introduction to Bioacoustics course. More information can be found within the walk through vignettes at <https://github.com/MattyD797/bioSNR/tree/main/vignettes>.
This package provides comprehensive tools for Bayesian model diagnostics and comparison. Includes prior sensitivity analysis, posterior predictive checks (Gelman et al. (2013) <doi:10.1201/b16018>), advanced model comparison using Pareto-smoothed importance sampling leave-one-out cross-validation (Vehtari et al. (2017) <doi:10.1007/s11222-016-9696-4>), convergence diagnostics, and prior elicitation tools. Integrates with brms (Burkner (2017) <doi:10.18637/jss.v080.i01>), rstan', and rstanarm packages for comprehensive Bayesian workflow diagnostics.
Data Package that includes several examples of chemical and biological data networks, i.e. data graph structured.
This is a port of the WTC MATLAB package written by Aslak Grinsted and the wavelet program written by Christopher Torrence and Gibert P. Compo. This package can be used to perform univariate and bivariate (cross-wavelet, wavelet coherence, wavelet clustering) analyses.
Bandwidth selectors for local linear quantile regression, including cross-validation and plug-in methods. The local linear quantile regression estimate is also implemented.
Includes functions to estimate production frontiers and make ideal output predictions in the Data Envelopment Analysis (DEA) context using both standard models from DEA and Free Disposal Hull (FDH) and boosting techniques. In particular, EATBoosting (Guillen et al., 2023 <doi:10.1016/j.eswa.2022.119134>) and MARSBoosting. Moreover, the package includes code for estimating several technical efficiency measures using different models such as the input and output-oriented radial measures, the input and output-oriented Russell measures, the Directional Distance Function (DDF), the Weighted Additive Measure (WAM) and the Slacks-Based Measure (SBM).
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
This is an implementation of design methods for binomial reliability demonstration tests (BRDTs) with failure count data. The acceptance decision uncertainty of BRDT has been quantified and the impacts of the uncertainty on related reliability assurance activities such as reliability growth (RG) and warranty services (WS) are evaluated. This package is associated with the work from the published paper "Optimal Binomial Reliability Demonstration Tests Design under Acceptance Decision Uncertainty" by Suiyao Chen et al. (2020) <doi:10.1080/08982112.2020.1757703>.
Fit semiparametric bivariate correlated frailty models.
This package provides two main functions, il() and fil(). The il() function implements the EM algorithm developed by Ibrahim and Lipsitz (1996) <DOI:10.2307/2533068> to estimate the parameters of a logistic regression model with the missing response when the missing data mechanism is nonignorable. The fil() function implements the algorithm proposed by Maity et. al. (2017+) <https://github.com/arnabkrmaity/brlrmr> to reduce the bias produced by the method of Ibrahim and Lipsitz (1996) <DOI:10.2307/2533068>.
This package contains Bayesian implementations of the Mixed-Effects Accelerated Failure Time (MEAFT) models for censored data. Those can be not only right-censored but also interval-censored, doubly-interval-censored or misclassified interval-censored. The methods implemented in the package have been published in Komárek and Lesaffre (2006, Stat. Modelling) <doi:10.1191/1471082X06st107oa>, Komárek, Lesaffre and Legrand (2007, Stat. in Medicine) <doi:10.1002/sim.3083>, Komárek and Lesaffre (2007, Stat. Sinica) <https://www3.stat.sinica.edu.tw/statistica/oldpdf/A17n27.pdf>, Komárek and Lesaffre (2008, JASA) <doi:10.1198/016214507000000563>, Garcà a-Zattera, Jara and Komárek (2016, Biometrics) <doi:10.1111/biom.12424>.