Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for model selection, model averaging, and calculating metrics, such as the Gini, Theil, Mean Log Deviation, etc, on binned income data where the topmost bin is right-censored. We provide both a non-parametric method, termed the bounded midpoint estimator (BME), which assigns cases to their bin midpoints; except for the censored bins, where cases are assigned to an income estimated by fitting a Pareto distribution. Because the usual Pareto estimate can be inaccurate or undefined, especially in small samples, we implement a bounded Pareto estimate that yields much better results. We also provide a parametric approach, which fits distributions from the generalized beta (GB) family. Because some GB distributions can have poor fit or undefined estimates, we fit 10 GB-family distributions and use multimodel inference to obtain definite estimates from the best-fitting distributions. We also provide binned income data from all United States of America school districts, counties, and states.
This package provides functions to scrape IQY calls to Bank of Mexico, downloading and ordering the data conveniently.
An implementation of sensitivity and robustness methods in Bayesian networks in R. It includes methods to perform parameter variations via a variety of co-variation schemes, to compute sensitivity functions and to quantify the dissimilarity of two Bayesian networks via distances and divergences. It further includes diagnostic methods to assess the goodness of fit of a Bayesian networks to data, including global, node and parent-child monitors. Reference: M. Leonelli, R. Ramanathan, R.L. Wilkerson (2022) <doi:10.1016/j.knosys.2023.110882>.
This package implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more.
Making probabilistic projections of life expectancy for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-012-0193-x>. Subnational projections are also supported.
This package provides functions to construct efficient block designs for 3-level factorial experiments in block size 3. The designs ensure the estimation of all main effects and two-factor interactions in minimum number of replications. For more details, see Dey and Mukerjee (2012) <doi:10.1016/j.spl.2012.06.014> and Dash, S., Parsad, R. and Gupta, V.K. (2013) <doi:10.1007/s40003-013-0059-5>.
This package provides a convenience package for use while drafting code. It facilitates making stand-out comment lines decorated with bands of characters. The input text strings are converted into R comment lines, suitably formatted. These are then displayed in a console window and, if possible, automatically transferred to a clipboard ready for pasting into an R script. Designed to save time when drafting R scripts that will need to be navigated and maintained by other programmers.
Facilitates some of the analyses performed in studies of behavioral economic discounting. The package supports scoring of the 27-Item Monetary Choice Questionnaire (see Kaplan et al., 2016; <doi:10.1007/s40614-016-0070-9>), calculating k values (Mazur's simple hyperbolic and exponential) using nonlinear regression, calculating various Area Under the Curve (AUC) measures, plotting regression curves for both fit-to-group and two-stage approaches, checking for unsystematic discounting (Johnson & Bickel, 2008; <doi:10.1037/1064-1297.16.3.264>) and scoring of the minute discounting task (see Koffarnus & Bickel, 2014; <doi:10.1037/a0035973>) using the Qualtrics 5-trial discounting template (see the Qualtrics Minute Discounting User Guide; <doi:10.13140/RG.2.2.26495.79527>), which is also available as a .qsf file in this package.
Generates Monte Carlo confidence intervals for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm(). betaMC combines ideas from Monte Carlo confidence intervals for the indirect effect (Pesigan and Cheung, 2024 <doi:10.3758/s13428-023-02114-4>) and the sampling covariance matrix of regression coefficients (Dudgeon, 2017 <doi:10.1007/s11336-017-9563-z>) to generate confidence intervals effect sizes in regression.
The Super Imposition by Translation and Rotation (SITAR) model is a shape-invariant nonlinear mixed effect model that fits a natural cubic spline mean curve to the growth data and aligns individual-specific growth curves to the underlying mean curve via a set of random effects (see Cole, 2010 <doi:10.1093/ije/dyq115> for details). The non-Bayesian version of the SITAR model can be fit by using the already available R package sitar'. While the sitar package allows modelling of a single outcome only, the bsitar package offers great flexibility in fitting models of varying complexities, including joint modelling of multiple outcomes such as height and weight (multivariate model). Additionally, the bsitar package allows for the simultaneous analysis of an outcome separately for subgroups defined by a factor variable such as gender. This is achieved by fitting separate models for each subgroup (for example males and females for gender variable). An advantage of this approach is that posterior draws for each subgroup are part of a single model object, making it possible to compare coefficients across subgroups and test hypotheses. Since the bsitar package is a front-end to the R package brms', it offers excellent support for post-processing of posterior draws via various functions that are directly available from the brms package. In addition, the bsitar package includes various customized functions that allow for the visualization of distance (increase in size with age) and velocity (change in growth rate as a function of age), as well as the estimation of growth spurt parameters such as age at peak growth velocity and peak growth velocity.
This package provides functions for modelling microbial inactivation under isothermal or dynamic conditions. The calculations are based on several mathematical models broadly used by the scientific community and industry. Functions enable to make predictions for cases where the kinetic parameters are known. It also implements functions for parameter estimation for isothermal and dynamic conditions. The model fitting capabilities include an Adaptive Monte Carlo method for a Bayesian approach to parameter estimation.
This package implements three test procedures using bootstrap resampling techniques for assessing treatment effects in one-way ANOVA models with unequal variances (heteroscedasticity). It includes a parametric bootstrap likelihood ratio test (PB_LRT()), a pairwise parametric bootstrap mean test (PPBMT()), and a Rademacher wild pairwise non-parametric bootstrap test (RWPNPBT()). These methods provide robust alternatives to classical ANOVA and standard pairwise comparisons when the assumption of homogeneity of variances is violated.
Allows the user to manage easily R packages removal and installation. It offers many functions to display installed packages according to specific dates and removes them if needed. The user is always prompted when running the removal functions in order to confirm the required action. It also provides functions that will install Github starred R packages whether available on CRAN or not.
Noise filter based on determining the proportion of neighboring points. A false point will be rejected if it has only few neighbors, but accepted if the proportion of neighbors in a rectangular frame is high. The size of the rectangular frame as well as the cut-off value, i.e. of a minimum proportion of neighbor-points, may be supplied or can be calculated automatically. Originally designed for the cleaning of heart rates, but suitable for filtering any slowly-changing physiological variable.For more information see Signer (2010)<doi:10.1111/j.2041-210X.2009.00010.x>.
This package provides a framework for scalable statistical computing on large on-disk matrices stored in HDF5 files. It provides efficient block-wise implementations of core linear-algebra operations (matrix multiplication, SVD, PCA, QR decomposition, and canonical correlation analysis) written in C++ and R. These building blocks are designed not only for direct use, but also as foundational components for developing new statistical methods that must operate on datasets too large to fit in memory. The package supports data provided either as HDF5 files or standard R objects, and is intended for high-dimensional applications such as omics and precision-medicine research.
Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. BFAST can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. BFAST monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. BFAST monitor provides functionality to detect disturbance in near real-time based on BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. BFAST Lite approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).
This package provides a collection of box-geometry model (BGM) files for the Atlantis ecosystem model. Atlantis is a deterministic, biogeochemical, whole-of-ecosystem model (see <http://atlantis.cmar.csiro.au/> for more information).
It computes betas-select, coefficients after standardization in structural equation models and regression models, standardizing only selected variables. Supports models with moderation, with product terms formed after standardization. It also offers confidence intervals that account for standardization, including bootstrap confidence intervals as proposed by Cheung et al. (2022) <doi:10.1037/hea0001188>.
Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.
Bayesian purity model to estimate tumor purity using methylation array data (DNA methylation Infinium 450K array data) without reference samples.
This package provides Bayesian quantile regression models for complex survey data under informative sampling using survey-weighted estimators. Both single- and multiple-output models are supported. To accelerate computation, all algorithms are implemented in C++ using Rcpp', RcppArmadillo', and RcppEigen', and are called from R'. See Nascimento and Gonçalves (2024) <doi:10.1093/jssam/smae015> and Nascimento and Gonçalves (2025, in press) <https://academic.oup.com/jssam>.
An R interface for the remote file hosting service Box (<https://www.box.com/>). In addition to uploading and downloading files, this package includes functions which mirror base R operations for local files, (e.g. box_load(), box_save(), box_read(), box_setwd(), etc.), as well as git style functions for entire directories (e.g. box_fetch(), box_push()).
This package provides a matrix-like data structure that allows for efficient, convenient, and scalable subsetting of binary genotype/phenotype files generated by PLINK (<https://www.cog-genomics.org/plink2>), the whole genome association analysis toolset, without loading the entire file into memory.
This R package offers block Gibbs samplers for the Bayesian (adaptive) graphical lasso, ridge, and naive elastic net priors. These samplers facilitate the simulation of the posterior distribution of precision matrices for Gaussian distributed data and were originally proposed by: Wang (2012) <doi:10.1214/12-BA729>; Smith et al. (2022) <doi:10.48550/arXiv.2210.16290> and Smith et al. (2023) <doi:10.48550/arXiv.2306.14199>, respectively.