Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements an S4 distribution system and estimation methods for parameters of common distribution families. The common d, p, q, r function family for each distribution is enriched with the ll, e, and v counterparts, computing the log-likelihood, performing estimation, and calculating the asymptotic variance - covariance matrix, respectively. Parameter estimation is performed analytically whenever possible.
This package provides a function allowing to normalize a JSON string, for example by adding double quotes around the keys when they are missing. Also provides RStudio addins for the same purpose.
Fast extrapolation of univariate and multivariate time features using K-Nearest Neighbors. The compact set of hyper-parameters is tuned via grid or random search.
This package provides method used to check whether data have outlier in efficiency measurement of big samples with data envelopment analysis (DEA). In this jackstrap method, the package provides two criteria to define outliers: heaviside and k-s test. The technique was developed by Sousa and Stosic (2005) "Technical Efficiency of the Brazilian Municipalities: Correcting Nonparametric Frontier Measurements for Outliers." <doi:10.1007/s11123-005-4702-4>.
Customized R Markdown templates for authoring articles for Journal of Data Science.
Scientific journal numeric formatting policies implemented in code. Emphasis on formatting mean/upper/lower sets of values to pasteable text for journal submission. For example c(2e6, 1e6, 3e6) becomes "2.00 million (1.00--3.00)". Lancet and Nature have built-in styles for rounding and punctuation marks. Users may extend journal styles arbitrarily. Four metrics are supported; proportions, percentage points, counts and rates. Magnitudes for all metrics are discovered automatically.
Manage project dependencies from your DESCRIPTION file. Create a reproducible virtual environment with minimal additional files in your project. Provides tools to add, remove, and update dependencies as well as install existing dependencies with a single function.
There are occasions where you need a piece of HTML with integrated styles. A prime example of this is HTML email. This transformation involves moving the CSS and associated formatting instructions from the style block in the head of your document into the body of the HTML. Many prominent email clients require integrated styles in HTML email; otherwise a received HTML email will be displayed without any styling. This package will quickly and precisely perform these CSS transformations when given HTML text and it does so by using the JavaScript juice library.
This package provides a set of wrappers around rjags functions to run Bayesian analyses in JAGS (specifically, via libjags'). A single function call can control adaptive, burn-in, and sampling MCMC phases, with MCMC chains run in sequence or in parallel. Posterior distributions are automatically summarized (with the ability to exclude some monitored nodes if desired) and functions are available to generate figures based on the posteriors (e.g., predictive check plots, traceplots). Function inputs, argument syntax, and output format are nearly identical to the R2WinBUGS'/'R2OpenBUGS packages to allow easy switching between MCMC samplers.
This package provides functions for grid square codes in Japan (<https://www.stat.go.jp/english/data/mesh/index.html>). Generates the grid square codes from longitude/latitude, geometries, and the grid square codes of different scales, and vice versa.
All the data and functions used to produce the book. We do not expect most people to use the package for any other reason than to get simple access to the JAGS model files, the data, and perhaps run some of the simple examples. The authors of the book are David Lucy (now sadly deceased) and James Curran. It is anticipated that a manuscript will be provided to Taylor and Francis around February 2020, with bibliographic details to follow at that point. Until such time, further information can be obtained by emailing James Curran.
Josa in Korean is often determined by judging the previous word. When writing reports using Rmd, a function that prints the appropriate investigation for each case is helpful. The josaplay package then evaluates the previous word to determine which josa is appropriate.
This package provides features that allow users to download weather data published by the Japan Meteorological Agency (JMA) website (<https://www.jma.go.jp/jma/index.html>). The data includes information dating back to 1976 and aligns with the categories available on the website. Additionally, users can process the best track data of typhoons and easily handle earthquake record files.
Create and customize interactive trees using the jQuery jsTree <https://www.jstree.com/> plugin library and the htmlwidgets package. These trees can be used directly from the R console, from RStudio', in Shiny apps and R Markdown documents.
This package provides methods to access data sets from the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information) from R.
This package provides a set of helper functions to conduct joint-significance tests for mediation analysis, as recommended by Yzerbyt, Muller, Batailler, & Judd. (2018) <doi:10.1037/pspa0000132>.
Leverages the yum package to implement a YAML ('YAML Ain't Markup Language', a human friendly standard for data serialization; see <https://yaml.org>) standard for documenting justifications, such as for decisions taken during the planning, execution and analysis of a study or during the development of a behavior change intervention as illustrated by Marques & Peters (2019) <doi:10.17605/osf.io/ndxha>. These justifications are both human- and machine-readable, facilitating efficient extraction and organisation.
This package implements delete-d jackknife resampling for robust statistical estimation. The package provides both weighted (HC3-adjusted) and unweighted versions of jackknife estimation, with parallel computation support. Suitable for biomedical research and other fields requiring robust variance estimation.
Fit survival data and perform dynamic prediction under joint frailty-copula models for tumour progression and death. Likelihood-based methods are employed for estimating model parameters, where the baseline hazard functions are modeled by the cubic M-spline or the Weibull model. The methods are applicable for meta-analytic data containing individual-patient information from several studies. Survival outcomes need information on both terminal event time (e.g., time-to-death) and non-terminal event time (e.g., time-to-tumour progression). Methodologies were published in Emura et al. (2017) <doi:10.1177/0962280215604510>, Emura et al. (2018) <doi:10.1177/0962280216688032>, Emura et al. (2020) <doi:10.1177/0962280219892295>, Shinohara et al. (2020) <doi:10.1080/03610918.2020.1855449>, Wu et al. (2020) <doi:10.1007/s00180-020-00977-1>, and Emura et al. (2021) <doi:10.1177/09622802211046390>. See also the book of Emura et al. (2019) <doi:10.1007/978-981-13-3516-7>. Survival data from ovarian cancer patients are also available.
Calculate statistical significance of Jaccard/Tanimoto similarity coefficients.
Fitting and analyzing a Joint Trait Distribution Model. The Joint Trait Distribution Model is implemented in the Bayesian framework using conjugate priors and posteriors, thus guaranteeing fast inference. In particular the package computes joint probabilities and multivariate confidence intervals, and enables the investigation of how they depend on the environment through partial response curves. The method implemented by the package is described in Poggiato et al. (2023) <doi:10.1111/geb.13706>.
This is a set of simple utility functions to perform mutual conversion between the current Japanese calendar system that Wareki, the old Japanese calendar system that the Kyureki calendar and the Julian and Gregorian calendar. To calculate each calendar method, it converts to the Julian Day Number.
This package provides a new class of Bayesian meta-analysis models that incorporates a model for internal and external validity bias. In this way, it is possible to combine studies of diverse quality and different types. For example, we can combine the results of randomized control trials (RCTs) with the results of observational studies (OS).
Encode/Decode base64', with support for JSON format, using two functions: j_encode() and j_decode(). Base64 is a group of similar binary-to-text encoding schemes that represent binary data in an ASCII string format by translating it into a radix-64 representation, used when there is a need to encode binary data that needs to be stored and transferred over media that are designed to deal with textual data, ensuring that the data will remain intact and without modification during transport. <https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding> On the other side, JSON (JavaScript Object Notation) is a lightweight data-interchange format. Easy to read, write, parse and generate. It is based on a subset of the JavaScript Programming Language. JSON is a text format that is completely language independent but uses conventions that are familiar to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. JSON structure is built around name:value pairs and ordered list of values. <https://www.json.org> The first function, j_encode(), let you transform a data.frame or list to a base64 encoded JSON (or JSON string). The j_decode() function takes a base64 string (could be an encoded JSON) and transform it to a data.frame (or list, depending of the JSON structure).