Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The free and open a statistical spreadsheet jamovi (<https://www.jamovi.org>) aims to make statistical analyses easy and intuitive. jamovi produces syntax that can directly be used in R (in connection with the R-package jmv'). Having import / export routines for the data files jamovi produces ('.omv') permits an easy transfer of data and analyses between jamovi and R.
Java GUI for R - cross-platform, universal and unified Graphical User Interface for R. For full functionality on Windows and Mac OS X JGR requires a start application which depends on your OS.
Maximum likelihood estimation for the semiparametric joint modeling of survival and longitudinal data. Refer to the Journal of Statistical Software article: <doi:10.18637/jss.v093.i02>.
This package provides a gridded classification of weather types by applying the Jenkinson and Collison classification. For a given region (it can be either local region or the whole map),it computes at each grid the 11 weather types during the period considered for the analysis. See Otero et al., (2017) <doi:10.1007/s00382-017-3705-y> for more information.
Template engine powered by the inja C++ library. Users write a template document, using syntax inspired by the Jinja Python package, and then render the final document by passing data from R. The template syntax supports features such as variables, loops, conditions and inheritance.
Fit survival data and perform dynamic prediction under joint frailty-copula models for tumour progression and death. Likelihood-based methods are employed for estimating model parameters, where the baseline hazard functions are modeled by the cubic M-spline or the Weibull model. The methods are applicable for meta-analytic data containing individual-patient information from several studies. Survival outcomes need information on both terminal event time (e.g., time-to-death) and non-terminal event time (e.g., time-to-tumour progression). Methodologies were published in Emura et al. (2017) <doi:10.1177/0962280215604510>, Emura et al. (2018) <doi:10.1177/0962280216688032>, Emura et al. (2020) <doi:10.1177/0962280219892295>, Shinohara et al. (2020) <doi:10.1080/03610918.2020.1855449>, Wu et al. (2020) <doi:10.1007/s00180-020-00977-1>, and Emura et al. (2021) <doi:10.1177/09622802211046390>. See also the book of Emura et al. (2019) <doi:10.1007/978-981-13-3516-7>. Survival data from ovarian cancer patients are also available.
This package provides statistical methods for auditing as implemented in JASP for Audit (Derks et al., 2021 <doi:10.21105/joss.02733>). First, the package makes it easy for an auditor to plan a statistical sample, select the sample from the population, and evaluate the misstatement in the sample compliant with international auditing standards. Second, the package provides statistical methods for auditing data, including tests of digit distributions and repeated values. Finally, the package includes methods for auditing algorithms on the aspect of fairness and bias. Next to classical statistical methodology, the package implements Bayesian equivalents of these methods whose statistical underpinnings are described in Derks et al. (2021) <doi:10.1111/ijau.12240>, Derks et al. (2024) <doi:10.2308/AJPT-2021-086>, Derks et al. (2022) <doi:10.31234/osf.io/8nf3e> Derks et al. (2024) <doi:10.31234/osf.io/tgq5z>, and Derks et al. (2025) <doi:10.31234/osf.io/b8tu2>.
This package performs a permutation test on the difference between two location parameters, a permutation correlation test, a permutation F-test, the Siegel-Tukey test, a ratio mean deviance test. Also performs some graphing techniques, such as for confidence intervals, vector addition, and Fourier analysis; and includes functions related to the Laplace (double exponential) and triangular distributions. Performs power calculations for the binomial test.
The goal of jetty is to execute R functions and code snippets in an isolated R subprocess within a Docker container and return the evaluated results to the local R session. jetty can install necessary packages at runtime and seamlessly propagates errors and outputs from the Docker subprocess back to the main session. jetty is primarily designed for sandboxed testing and quick execution of example code.
This package provides a convenience tool to create HTML with inline styles using juicyjuice and markdown packages. It is particularly useful when working on a content management system (CMS) whose code editor eliminates style and link tags. The main use case of the package is the learning management system, Moodle'. Additional helper functions for teaching purposes are provided. Learn more about juicedown at <https://kenjisato.github.io/juicedown/>.
This package provides functions to standardize and whiten data, and to perform Principal Component Analysis (PCA). The main advantage of this package over alternatives like prcomp() is, that jvcoords makes it easy to convert (additional) data between the original and the transformed coordinates. The package also provides a class coords, which can represent affine coordinate transformations. This class forms the basis of the transformations provided by the package, but can also be used independently. The implementation has been optimized to be of comparable speed (and sometimes even faster) than existing alternatives.
This package provides methods to access data sets from the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information) from R.
Shared parameter models for the joint modeling of longitudinal and time-to-event data using MCMC; Dimitris Rizopoulos (2016) <doi:10.18637/jss.v072.i07>.
Runs resampling-based tests jointly, e.g., sign-flip score tests from Hemerik et al., (2020) <doi:10.1111/rssb.12369>, to allow for multivariate testing, i.e., weak and strong control of the Familywise Error Rate or True Discovery Proportion.
Some handy function in R.
Computing and plotting joint confidence regions and intervals. Regions include classical ellipsoids, minimum-volume or minimum-length regions, and an empirical Bayes region. Intervals include the TOST procedure with ordinary or expanded intervals and a fixed-sequence procedure. Such regions and intervals are useful e.g., for the assessment of multi-parameter (bio-)equivalence. Joint confidence regions for the mean and variance of a normal distribution are available as well.
Metaprogramming utilities for converting R regression model formulae to equivalents in Julia <doi:10.1137/141000671>, via modifications to the abstract syntax tree. Supports translations in zero correlation random effects syntax, protection of expressions to be evaluated as-is, interaction terms, and more. Accepts strings or R formula objects and returns modified R formula objects where possible (or a modified string, if not a valid formula in R).
Proposes a coarse-to-fine optimization of a recommending system based on deep-neural networks using tensorflow'.
Fit joint models for longitudinal and time-to-event data under the Bayesian approach. Multiple longitudinal outcomes of mixed type (continuous/categorical) and multiple event times (competing risks and multi-state processes) are accommodated. Rizopoulos (2012, ISBN:9781439872864).
This package contains procedures to estimate the nine condensed Jacquard genetic identity coefficients (Jacquard, 1974) <doi:10.1007/978-3-642-88415-3> by constrained least squares (Graffelman et al., 2024) <doi:10.1101/2024.03.25.586682> and by the method of moments (Csuros, 2014) <doi:10.1016/j.tpb.2013.11.001>. These procedures require previous estimation of the allele frequencies. Functions are supplied that estimate relationship parameters that derive from the Jacquard coefficients, such as individual inbreeding coefficients and kinship coefficients.
Implementation of a parametric joint model for modelling recurrent and competing event processes using generalised survival models as described in Entrop et al., (2025) <doi:10.1002/bimj.70038>. The joint model can subsequently be used to predict the mean number of events in the presence of competing risks at different time points. Comparisons of the mean number of event functions, e.g. the differences in mean number of events between two exposure groups, are also available.
Fits joint species distribution models ('jSDM') in a hierarchical Bayesian framework (Warton and al. 2015 <doi:10.1016/j.tree.2015.09.007>). The Gibbs sampler is written in C++'. It uses Rcpp', Armadillo and GSL to maximize computation efficiency.
This package implements delete-d jackknife resampling for robust statistical estimation. The package provides both weighted (HC3-adjusted) and unweighted versions of jackknife estimation, with parallel computation support. Suitable for biomedical research and other fields requiring robust variance estimation.
This is a collection of tools for more efficiently understanding and sharing the results of (primarily) regression analyses. There are also a number of miscellaneous functions for statistical and programming purposes. Support for models produced by the survey and lme4 packages are points of emphasis.