Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Different algorithms to perform approximate joint diagonalization of a finite set of square matrices. Depending on the algorithm, orthogonal or non-orthogonal diagonalizer is found. These algorithms are particularly useful in the context of blind source separation. Original publications of the algorithms can be found in Ziehe et al. (2004), Pham and Cardoso (2001) <doi:10.1109/78.942614>, Souloumiac (2009) <doi:10.1109/TSP.2009.2016997>, Vollgraff and Obermayer <doi:10.1109/TSP.2006.877673>. An example of application in the context of Brain-Computer Interfaces EEG denoising can be found in Gouy-Pailler et al (2010) <doi:10.1109/TBME.2009.2032162>.
This package provides an R interface to Julia', which is a high-level, high-performance dynamic programming language for numerical computing, see <https://julialang.org/> for more information. It provides a high-level interface as well as a low-level interface. Using the high level interface, you could call any Julia function just like any R function with automatic type conversion. Using the low level interface, you could deal with C-level SEXP directly while enjoying the convenience of using a high-level programming language like Julia'.
Estimates networks of conditional dependencies (Gaussian graphical models) from multiple classes of data (similar but not exactly, i.e. measurements on different equipment, in different locations or for various sub-types). Package also allows to generate simulation data and evaluate the performance. Implementation of the method described in Angelini, De Canditiis and Plaksienko (2022) <doi:10.3390/math10213983>.
This package implements the classical Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix, both in pure R and in C++ using Rcpp'. Mainly as a programming example for teaching purposes.
This package provides an R interface to the JBrowse 2 genome browser. Enables embedding a JB2 genome browser in a Shiny app or R Markdown document. The browser can also be launched from an interactive R console. The browser can be loaded with a variety of common genomics data types, and can be used with a custom theme.
This package provides features that allow users to download weather data published by the Japan Meteorological Agency (JMA) website (<https://www.jma.go.jp/jma/index.html>). The data includes information dating back to 1976 and aligns with the categories available on the website. Additionally, users can process the best track data of typhoons and easily handle earthquake record files.
This package provides a small package containing functions to perform a joint calibration of totals and quantiles. The calibration for totals is based on Deville and Särndal (1992) <doi:10.1080/01621459.1992.10475217>, the calibration for quantiles is based on Harms and Duchesne (2006) <https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X20060019255>. The package uses standard calibration via the survey', sampling or laeken packages. In addition, entropy balancing via the ebal package and empirical likelihood based on codes from Wu (2005) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2005002/article/9051-eng.pdf> can be used. See the paper by BerÄ sewicz and Szymkowiak (2023) for details <arXiv:2308.13281>.
Computes the Jackknife Mutual Information (JMI) between two random vectors and provides the p-value for dependence tests. See Zeng, X., Xia, Y. and Tong, H. (2018) <doi:10.1073/pnas.1715593115>.
We provide tools to estimate the individualized interval-valued dose rule (I2DR) that maximizes the expected beneficial clinical outcome for each individual and returns an optimal interval-valued dose, by using the jump Q-learning (JQL) method. The jump Q-learning method directly models the conditional mean of the response given the dose level and the baseline covariates via jump penalized least squares regression under the framework of Q learning. We develop a searching algorithm by dynamic programming in order to find the optimal I2DR with the time complexity O(n2) and spatial complexity O(n). To alleviate the effects of misspecification of the Q-function, a residual jump Q-learning is further proposed to estimate the optimal I2DR. The outcome of interest includes the best partition of the entire dosage of interest, the regression coefficients of each partition, and the value function under the estimated I2DR as well as the Wald-type confidence interval of value function constructed through the Bootstrap.
Jointly estimates two-group means and covariances for matrix-variate data and calculates test statistics. This package implements the algorithms defined in Hornstein, Fan, Shedden, and Zhou (2018) <doi:10.1080/01621459.2018.1429275>.
This package implements under/oversampling for probability estimation. To be used with machine learning methods such as AdaBoost, random forests, etc.
This package provides a set of functions to compute the Hodrick-Prescott (HP) filter with automatically selected jumps. The original HP filter extracts a smooth trend from a time series, and our version allows for a small number of automatically identified jumps. See Maranzano and Pelagatti (2024) <doi:10.2139/ssrn.4896170> for details.
This is a set of simple utility functions to perform mutual conversion between the current Japanese calendar system that Wareki, the old Japanese calendar system that the Kyureki calendar and the Julian and Gregorian calendar. To calculate each calendar method, it converts to the Julian Day Number.
Evaluation of the Jacobi theta functions and related functions: Weierstrass elliptic function, Weierstrass sigma function, Weierstrass zeta function, Klein j-function, Dedekind eta function, lambda modular function, Jacobi elliptic functions, Neville theta functions, Eisenstein series, lemniscate elliptic functions, elliptic alpha function, Rogers-Ramanujan continued fractions, and Dixon elliptic functions. Complex values of the variable are supported.
Interface to JSON-stat <https://json-stat.org/>, a simple lightweight JSON format for data dissemination.
This package provides functions to justify alpha levels for statistical hypothesis tests by avoiding Lindley's paradox, or by minimizing or balancing error rates. For more information about the package please read the following: Maier & Lakens (2021) <doi:10.31234/osf.io/ts4r6>).
Option is a one of the financial derivatives and its pricing is an important problem in practice. The process of stock prices are represented as Geometric Brownian motion [Black (1973) <doi:10.1086/260062>] or jump diffusion processes [Kou (2002) <doi:10.1287/mnsc.48.8.1086.166>]. In this package, algorithms and visualizations are implemented by Monte Carlo method in order to calculate European option price for three equations by Geometric Brownian motion and jump diffusion processes and furthermore a model that presents jumps among companies affect each other.
Fitting and analyzing a Joint Trait Distribution Model. The Joint Trait Distribution Model is implemented in the Bayesian framework using conjugate priors and posteriors, thus guaranteeing fast inference. In particular the package computes joint probabilities and multivariate confidence intervals, and enables the investigation of how they depend on the environment through partial response curves. The method implemented by the package is described in Poggiato et al. (2023) <doi:10.1111/geb.13706>.
Scientific journal numeric formatting policies implemented in code. Emphasis on formatting mean/upper/lower sets of values to pasteable text for journal submission. For example c(2e6, 1e6, 3e6) becomes "2.00 million (1.00--3.00)". Lancet and Nature have built-in styles for rounding and punctuation marks. Users may extend journal styles arbitrarily. Four metrics are supported; proportions, percentage points, counts and rates. Magnitudes for all metrics are discovered automatically.
This package provides a seamless bridge between keras and the tidymodels frameworks. It allows for the dynamic creation of parsnip model specifications for keras models.
Understanding the current status of forest resources is essential for monitoring changes in forest ecosystems and generating related statistics. In South Korea, the National Forest Inventory (NFI) surveys over 4,500 sample plots nationwide every five years and records 70 items, including forest stand, forest resource, and forest vegetation surveys. Many researchers use NFI as the primary data for research, such as biomass estimation or analyzing the importance value of each species over time and space, depending on the research purpose. However, the large volume of accumulated forest survey data from across the country can make it challenging to manage and utilize such a vast dataset. To address this issue, we developed an R package that efficiently handles large-scale NFI data across time and space. The package offers a comprehensive workflow for NFI data analysis. It starts with data processing, where read_nfi() function reconstructs NFI data according to the researcher's needs while performing basic integrity checks for data quality.Following this, the package provides analytical tools that operate on the verified data. These include functions like summary_nfi() for summary statistics, diversity_nfi() for biodiversity analysis, iv_nfi() for calculating species importance value, and biomass_nfi() and cwd_biomass_nfi() for biomass estimation. Finally, for visualization, the tsvis_nfi() function generates graphs and maps, allowing users to visualize forest ecosystem changes across various spatial and temporal scales. This integrated approach and its specialized functions can enhance the efficiency of processing and analyzing NFI data, providing researchers with insights into forest ecosystems. The NFI Excel files (.xlsx) are not included in the R package and must be downloaded separately. Users can access these NFI Excel files by visiting the Korea Forest Service Forestry Statistics Platform <https://kfss.forest.go.kr/stat/ptl/article/articleList.do?curMenu=11694&bbsId=microdataboard> to download the annual NFI Excel files, which are bundled in .zip archives. Please note that this website is only available in Korean, and direct download links can be found in the notes section of the read_nfi() function.
Producing kernel estimates of the unconditional and conditional hazard function for right-censored data including methods of bandwidth selection.
The computational complexity of the implemented algorithm for Kendall's correlation is O(n log(n)), which is faster than the base R implementation with a computational complexity of O(n^2). For small vectors (i.e., less than 100 observations), the time difference is negligible. However, for larger vectors, the speed difference can be substantial and the numerical difference is minimal. The references are Knight (1966) <doi:10.2307/2282833>, Abrevaya (1999) <doi:10.1016/S0165-1765(98)00255-9>, Christensen (2005) <doi:10.1007/BF02736122> and Emara (2024) <https://learningcpp.org/>. This implementation is described in Vargas Sepulveda (2025) <doi:10.1371/journal.pone.0326090>.
This package provides an easy way to create interactive KPI (key performance indicator) widgets for Quarto dashboards using Crosstalk'. The package enables visualization of key metrics in a structured format, supporting interactive filtering and linking with other Crosstalk'-enabled components. Designed for use in Quarto Dashboards.