Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create regression tables from generalized linear model(GLM), generalized estimating equation(GEE), generalized linear mixed-effects model(GLMM), Cox proportional hazards model, survey-weighted generalized linear model(svyglm) and survey-weighted Cox model results for publication.
The function get_parameters() is intended to be used within a docker container to read keyword arguments from a .json file automagically. A tool.yaml file contains specifications on these keyword arguments, which are then passed as input to containerized R tools in the [tool-runner framework](<https://github.com/hydrocode-de/tool-runner>). A template for a containerized R tool, which can be used as a basis for developing new tools, is available at the following URL: <https://github.com/VForWaTer/tool_template_r>.
This package provides an R interface to the JBrowse 2 genome browser. Enables embedding a JB2 genome browser in a Shiny app or R Markdown document. The browser can also be launched from an interactive R console. The browser can be loaded with a variety of common genomics data types, and can be used with a custom theme.
Jointly estimates two-group means and covariances for matrix-variate data and calculates test statistics. This package implements the algorithms defined in Hornstein, Fan, Shedden, and Zhou (2018) <doi:10.1080/01621459.2018.1429275>.
This package provides a mainly instrumental package meant to allow other packages whose core is written in C++ to read, write and manipulate matrices in a binary format so that the memory used for them is no more than strictly needed. Its functionality is already inside parallelpam and scellpam', so if you have installed any of these, you do not need to install jmatrix'. Using just the needed memory is not always true with R matrices or vectors, since by default they are of double type. Trials like the float package have been done, but to use them you have to coerce a matrix already loaded in R memory to a float matrix, and then you can delete it. The problem comes when your computer has not memory enough to hold the matrix in the first place, so you are forced to load it by chunks. This is the problem this package tries to address (with partial success, but this is a difficult problem since R is not a strictly typed language, which is anyway quite hard to get in an interpreted language). This package allows the creation and manipulation of full, sparse and symmetric matrices of any standard data type.
This is a collection of tools for more efficiently understanding and sharing the results of (primarily) regression analyses. There are also a number of miscellaneous functions for statistical and programming purposes. Support for models produced by the survey and lme4 packages are points of emphasis.
Graphics device routing all graphics commands to a Java program. The actual functionality of the JavaGD depends on the Java-side implementation. Simple AWT and Swing implementations are included.
Java GUI for R - cross-platform, universal and unified Graphical User Interface for R. For full functionality on Windows and Mac OS X JGR requires a start application which depends on your OS.
This package performs Joins and Minus Queries on Excel Files fulljoinXL() Merges all rows of 2 Excel files based upon a common column in the files. innerjoinXL() Merges all rows from base file and join file when the join condition is met. leftjoinXL() Merges all rows from the base file, and all rows from the join file if the join condition is met. rightjoinXL() Merges all rows from the join file, and all rows from the base file if the join condition is met. minusXL() Performs 2 operations source-minus-target and target-minus-source If the files are identical all output files will be empty. Choose two Excel files via a dialog box, and then follow prompts at the console to choose a base or source file and columns to merge or minus on.
This package provides a fast and scalable joint estimator for integrating additional knowledge in learning multiple related sparse Gaussian Graphical Models (JEEK). The JEEK algorithm can be used to fast estimate multiple related precision matrices in a large-scale. For instance, it can identify multiple gene networks from multi-context gene expression datasets. By performing data-driven network inference from high-dimensional and heterogeneous data sets, this tool can help users effectively translate aggregated data into knowledge that take the form of graphs among entities. Please run demo(jeek) to learn the basic functions provided by this package. For further details, please read the original paper: Beilun Wang, Arshdeep Sekhon, Yanjun Qi "A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models" (ICML 2018) <arXiv:1806.00548>.
This package provides a function collection to extract metadata, sectioned text and study characteristics from scientific articles in NISO-JATS format. Articles in PDF format can be converted to NISO-JATS with the Content ExtRactor and MINEr ('CERMINE', <https://github.com/CeON/CERMINE>). For convenience, two functions bundle the extraction heuristics: JATSdecoder() converts NISO-JATS'-tagged XML files to a structured list with elements title, author, journal, history, DOI', abstract, sectioned text and reference list. study.character() extracts multiple study characteristics like number of included studies, statistical methods used, alpha error, power, statistical results, correction method for multiple testing, software used. The function get.stats() extracts all statistical results from text and recomputes p-values for many standard test statistics. It performs a consistency check of the reported with the recalculated p-values. An estimation of the involved sample size is performed based on textual reports within the abstract and the reported degrees of freedom within statistical results. In addition, the package contains some useful functions to process text (text2sentences(), text2num(), ngram(), strsplit2(), grep2()). See Böschen, I. (2021) <doi:10.1007/s11192-021-04162-z> Böschen, I. (2021) <doi:10.1038/s41598-021-98782-3>, Böschen, I. (2023) <doi:10.1038/s41598-022-27085-y>, and Böschen, I. (2024) <doi:10.48550/arXiv.2408.07948>.
Some handy function in R.
This package implements time series z-normalization, SAX, HOT-SAX, VSM, SAX-VSM, RePair, and RRA algorithms facilitating time series motif (i.e., recurrent pattern), discord (i.e., anomaly), and characteristic pattern discovery along with interpretable time series classification.
Proposes a coarse-to-fine optimization of a recommending system based on deep-neural networks using tensorflow'.
This package provides a RStudio addin to send some JavaScript code to the V8 console. The user can send an entire JavaScript file or only some selected lines. This is useful to test the code.
This package provides a suite of common statistical methods such as descriptives, t-tests, ANOVAs, regression, correlation matrices, proportion tests, contingency tables, and factor analysis. This package is also useable from the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information).
Jade Lizard and Reverse Jade Lizard Option Strategies are presented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Russell A. Stultz (â The option strategy desk reference: an essential reference for option traders (First edition.)â , 2019, ISBN: 9781949443912).
Tool for diagnosing table joins. It combines the speed of `collapse` and `data.table`, the flexibility of `dplyr`, and the diagnosis and features of the `merge` command in `Stata`.
This package provides a gridded classification of weather types by applying the Jenkinson and Collison classification. For a given region (it can be either local region or the whole map),it computes at each grid the 11 weather types during the period considered for the analysis. See Otero et al., (2017) <doi:10.1007/s00382-017-3705-y> for more information.
Individual based simulations of hybridizing populations, where the accumulation of junctions is tracked. Furthermore, mathematical equations are provided to verify simulation outcomes. Both simulations and mathematical equations are based on Janzen (2018, <doi:10.1101/058107>) and Janzen (2022, <doi:10.1111/1755-0998.13519>).
Estimates networks of conditional dependencies (Gaussian graphical models) from multiple classes of data (similar but not exactly, i.e. measurements on different equipment, in different locations or for various sub-types). Package also allows to generate simulation data and evaluate the performance. Implementation of the method described in Angelini, De Canditiis and Plaksienko (2022) <doi:10.3390/math10213983>.
This package provides a Wrapper for the Node.js Jdenticon <https://jdenticon.com/> Library. Uses esbuild <https://esbuild.github.io/> to reduce user dependencies.
Uses least squares optimisation to estimate the parameters of the best-fitting JohnsonSU distribution for a given dataset, with the possibility of the distributions corresponding to the limiting cases of the JohnsonSU distribution. The code for the Golden Section Search used in the optimisation has been adapted from E. Cai. This package has been created as an extension of my Master's thesis. E. Cai (2013, "Scripts and Functions: Using R to Implement the Golden Section Search Method for Numerical Optimization", <https://chemicalstatistician.wordpress.com/2013/04/22/using-r-to-implement-the-golden-bisection-method/>).
JSON-LD <https://www.w3.org/TR/json-ld/> is a light-weight syntax for expressing linked data. It is primarily intended for web-based programming environments, interoperable web services and for storing linked data in JSON-based databases. This package provides bindings to the JavaScript library for converting, expanding and compacting JSON-LD documents.