Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to Japan, such as holidays, economic indicators, and international demographic and geopolitical indicators. Additionally, the package includes one of the largest curated collections of open datasets focused on Japan, covering topics such as natural disasters, economic production, vehicle industry, air quality, demographics, and administrative divisions. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
This package provides diagnostic tools for understanding and debugging data frame joins. Analyzes key columns before joining to detect duplicates, mismatches, encoding issues, and other common problems. Explains unexpected row count changes and provides safe join wrappers with cardinality enforcement. Concepts and diagnostics build on tidy data principles as described in Wickham (2014) <doi:10.18637/jss.v059.i10>.
This package provides a Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.
This package provides functions to justify alpha levels for statistical hypothesis tests by avoiding Lindley's paradox, or by minimizing or balancing error rates. For more information about the package please read the following: Maier & Lakens (2021) <doi:10.31234/osf.io/ts4r6>).
This package provides a long-term forecast model called "Jubilee-Tectonic model" is implemented to forecast future returns of the U.S. stock market, Treasury yield, and gold price. The five-factor model forecasts the 10-year and 20-year future equity returns with high R-squared above 80 percent. It is based on linear growth and mean reversion characteristics in the U.S. stock market. This model also enhances the CAPE model by introducing the hypothesis that there are fault lines in the historical CAPE, which can be calibrated and corrected through statistical learning. In addition, it contains a module for business cycles, optimal interest rate, and recession forecasts.
Install packages without attaching them. If a package it is already installed, it will be skipped.
An httpuv based bridge between R and JavaScript'. Provides an easy way to exchange commands and data between a web page and a currently running R session.
Structure and formatting requirements for clinical trial table and listing outputs vary between pharmaceutical companies. junco provides additional tooling for use alongside the rtables', rlistings and tern packages when creating table and listing outputs. While motivated by the specifics of Johnson and Johnson Clinical and Statistical Programming's table and listing shells, junco provides functionality that is general and reusable. Major features include a) alternative and extended statistical analyses beyond what tern supports for use in standard safety and efficacy tables, b) a robust production-grade Rich Text Format (RTF) exporter for both tables and listings, c) structural support for spanning column headers and risk difference columns in tables, and d) robust font-aware automatic column width algorithms for both listings and tables.
This package provides a convenience tool to create HTML with inline styles using juicyjuice and markdown packages. It is particularly useful when working on a content management system (CMS) whose code editor eliminates style and link tags. The main use case of the package is the learning management system, Moodle'. Additional helper functions for teaching purposes are provided. Learn more about juicedown at <https://kenjisato.github.io/juicedown/>.
To test if a tensor time series following a Tucker-decomposition factor model has a Kronecker product structure. Supplementary functions for tensor reshape and its reversal are also included.
Implementation for Kendall functional principal component analysis. Kendall functional principal component analysis is a robust functional principal component analysis technique for non-Gaussian functional/longitudinal data. The crucial function of this package is KFPCA() and KFPCA_reg(). Moreover, least square estimates of functional principal component scores are also provided. Refer to Rou Zhong, Shishi Liu, Haocheng Li, Jingxiao Zhang. (2021) <arXiv:2102.01286>. Rou Zhong, Shishi Liu, Haocheng Li, Jingxiao Zhang. (2021) <doi:10.1016/j.jmva.2021.104864>.
Read Swiss time series data from the KOF Data API, <https://datenservice.kof.ethz.ch>. The API provides macro economic time series data mostly about Switzerland. The package itself is a set of wrappers around the KOF Datenservice API. The kofdata package is able to consume public information as well as data that requires an API token.
Selection of k in k-means clustering based on Pham et al. paper ``Selection of k in k-means clustering''.
This package implements the vine copula based kernel density estimator of Nagler and Czado (2016) <doi:10.1016/j.jmva.2016.07.003>. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications.
S4 tool box for capacity (or non-additive measure, fuzzy measure) and integral manipulation in a finite setting. It contains routines for handling various types of set functions such as games or capacities. It can be used to compute several non-additive integrals: the Choquet integral, the Sugeno integral, and the symmetric and asymmetric Choquet integrals. An analysis of capacities in terms of decision behavior can be performed through the computation of various indices such as the Shapley value, the interaction index, the orness degree, etc. The well-known Möbius transform, as well as other equivalent representations of set functions can also be computed. Kappalab further contains seven capacity identification routines: three least squares based approaches, a method based on linear programming, a maximum entropy like method based on variance minimization, a minimum distance approach and an unsupervised approach based on parametric entropies. The functions contained in Kappalab can for instance be used in the framework of multicriteria decision making or cooperative game theory.
Adaptive estimation of the first-order intensity function of a spatio-temporal point process using kernels and variable bandwidths. The methodology used for estimation is presented in González and Moraga (2022). <doi:10.48550/arXiv.2208.12026>.
This package provides a shiny app to visualize the knowledge networks for the code concepts. Using co-occurrence matrices of EHR codes from Veterans Affairs (VA) and Massachusetts General Brigham (MGB), the knowledge extraction via sparse embedding regression (KESER) algorithm was used to construct knowledge networks for the code concepts. Background and details about the method can be found at Chuan et al. (2021) <doi:10.1038/s41746-021-00519-z>.
This package provides wind energy practitioners with an effective machine learning-based tool that estimates a multivariate power curve and predicts the wind power output for a specific environmental condition.
Understanding the current status of forest resources is essential for monitoring changes in forest ecosystems and generating related statistics. In South Korea, the National Forest Inventory (NFI) surveys over 4,500 sample plots nationwide every five years and records 70 items, including forest stand, forest resource, and forest vegetation surveys. Many researchers use NFI as the primary data for research, such as biomass estimation or analyzing the importance value of each species over time and space, depending on the research purpose. However, the large volume of accumulated forest survey data from across the country can make it challenging to manage and utilize such a vast dataset. To address this issue, we developed an R package that efficiently handles large-scale NFI data across time and space. The package offers a comprehensive workflow for NFI data analysis. It starts with data processing, where read_nfi() function reconstructs NFI data according to the researcher's needs while performing basic integrity checks for data quality.Following this, the package provides analytical tools that operate on the verified data. These include functions like summary_nfi() for summary statistics, diversity_nfi() for biodiversity analysis, iv_nfi() for calculating species importance value, and biomass_nfi() and cwd_biomass_nfi() for biomass estimation. Finally, for visualization, the tsvis_nfi() function generates graphs and maps, allowing users to visualize forest ecosystem changes across various spatial and temporal scales. This integrated approach and its specialized functions can enhance the efficiency of processing and analyzing NFI data, providing researchers with insights into forest ecosystems. The NFI Excel files (.xlsx) are not included in the R package and must be downloaded separately. Users can access these NFI Excel files by visiting the Korea Forest Service Forestry Statistics Platform <https://kfss.forest.go.kr/stat/ptl/article/articleList.do?curMenu=11694&bbsId=microdataboard> to download the annual NFI Excel files, which are bundled in .zip archives. Please note that this website is only available in Korean, and direct download links can be found in the notes section of the read_nfi() function.
This package provides a method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. kfino is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. ML (Maximization Likelihood) and EM (Expectation-Maximization algorithm) algorithms were implemented in kfino'. The method is described in full details in the following arXiv e-Print: <arXiv:2208.00961>.
This package provides the function to calculate the kernel-lasso expansion, Z-score, and max-min-scale standardization.It can increase the dimension of existed dataset and remove abundant features by lasso. Z Dai, L Jiayi, T Gong, C Wang (2021) <doi:10.1088/1742-6596/1955/1/012047>.
Implementations several algorithms for kernel k-means. The default OTQT algorithm is a fast alternative to standard implementations of kernel k-means, particularly in cases with many clusters. For a small number of clusters, the implemented MacQueen method typically performs the fastest. For more details and performance evaluations, see Berlinski and Maitra (2025) <doi:10.1002/sam.70032>.
We developed a package Keyboard for designing single-agent, drug-combination, or phase I/II dose-finding clinical trials. The Keyboard designs are novel early phase trial designs that can be implemented simply and transparently, similar to the 3+3 design, but yield excellent performance, comparable to those of more-complicated, model-based designs (Yan F, Mandrekar SJ, Yuan Y (2017) <doi:10.1158/1078-0432.CCR-17-0220>, Li DH, Whitmore JB, Guo W, Ji Y. (2017) <doi:10.1158/1078-0432.CCR-16-1125>, Liu S, Johnson VE (2016) <doi:10.1093/biostatistics/kxv040>, Zhou Y, Lee JJ, Yuan Y (2019) <doi:10.1002/sim.8475>, Pan H, Lin R, Yuan Y (2020) <doi:10.1016/j.cct.2020.105972>). The Keyboard package provides tools for designing, conducting, and analyzing single-agent, drug-combination, and phase I/II dose-finding clinical trials. For more details about how to use this packge, please refer to Li C, Sun H, Cheng C, Tang L, and Pan H. (2022) "A software tool for both the maximum tolerated dose and the optimal biological dose finding trials in early phase designs". Manuscript submitted for publication.
Rcpp implementation of the multivariate Kalman filter for state space models that can handle missing values and exogenous data in the observation and state equations. There is also a function to handle time varying parameters. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.