Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Structural T1 magnetic resonance imaging ('MRI') data from the Kirby21 reproducibility study <doi:10.1016/j.neuroimage.2010.11.047>.
Assists researchers in choosing Key Opinion Leaders (KOLs) in a network to help disseminate or encourage adoption of an innovation by other network members. Potential KOL teams are evaluated using the ABCDE framework (Neal et al., 2025 <doi:10.31219/osf.io/3vxy9_v1>). This framework which considers: (1) the team members Availability, (2) the Breadth of the team's network coverage, (3) the Cost of recruiting a team of a given size, and (4) the Diversity of the team's members, (5) which are pooled into a single Evaluation score.
An implementation of the blocking algorithm KLSH in Steorts, Ventura, Sadinle, Fienberg (2014) <DOI:10.1007/978-3-319-11257-2_20>, which is a k-means variant of locality sensitive hashing. The method is illustrated with examples and a vignette.
Machine learning, containing several algorithms for supervised and unsupervised classification, in addition to a function that plots the Receiver Operating Characteristic (ROC) and Precision-Recall (PRC) curve graphs, and also a function that returns several metrics used for model evaluation, the latter can be used in ranking results from other packs.
K Quantiles Medoids (KQM) clustering applies quantiles to divide data of each dimension into K mean intervals. Combining quantiles of all the dimensions of the data and fully permuting quantiles on each dimension is the strategy to determine a pool of candidate initial cluster centers. To find the best initial cluster centers from the pool of candidate initial cluster centers, two methods based on quantile strategy and PAM strategy respectively are proposed. During a clustering process, medoids of clusters are used to update cluster centers in each iteration. Comparison between KQM and the method of randomly selecting initial cluster centers shows that KQM is almost always getting clustering results with smaller total sum squares of distances.
Nonparametric kernel distribution function estimation is performed. Three bandwidth selectors are implemented: the plug-in selectors of Altman and Leger and of Polansky and Baker, and the cross-validation selector of Bowman, Hall and Prvan. The exceedance function, the mean return period and the return level are also computed. For details, see Quintela-del-Rà o and Estévez-Pérez (2012) <doi:10.18637/jss.v050.i08>.
Identification of putative causal variants in genome-wide association studies with trio and duo families. The package calculates the W feature statistics from KnockoffTrio and p-values from the family-based association test (FBAT) using trio and/or duo data. Compared to previous versions, a significant improvement has been made in Version 1.1.0 to allow the package to be applied not only to trio families but also to duo families. The package implements the methods in the paper: "Yang, Y., Wang, C., Liu, L., Buxbaum, J., He, Z., & Ionita-Laza, I. (2022). KnockoffTrio: A knockoff framework for the identification of putative causal variants in genome-wide association studies with trio design. The American Journal of Human Genetics, 109(10), 1761-1776.".
This package provides tools for keeping track of information, named "keys", about rows of data frame like objects. This is done by creating special attribute "keys" which is updated after every change in rows (subsetting, ordering, etc.). This package is designed to work tightly with dplyr package.
This package provides a toolkit for absolute and relative dating and analysis of chronological patterns. This package includes functions for chronological modeling and dating of archaeological assemblages from count data. It provides methods for matrix seriation. It also allows to compute time point estimates and density estimates of the occupation and duration of an archaeological site.
An efficient algorithm inspired by majorization-minimization principle for solving the entire solution path of a flexible nonparametric expectile regression estimator constructed in a reproducing kernel Hilbert space.
This function performs the two-sample Kuiper test to assess the anomaly of continuous, one-dimensional probability distributions. References used for this method are (1). Kuiper, N. H. (1960). <DOI:10.1016/S1385-7258(60)50006-0> and (2). Paltani, S. (2004). <DOI:10.1051/0004-6361:20034220>.
This package provides a spatial smoothing algorithm based on convolutions of finite rectangular kernels that provides sharp resolution in the presence of high levels of noise.
The K-sample omnibus non-proportional hazards (KONP) tests are powerful non-parametric tests for comparing K (>=2) hazard functions based on right-censored data (Gorfine, Schlesinger and Hsu, 2020, <doi:10.1177/0962280220907355>). These tests are consistent against any differences between the hazard functions of the groups. The KONP tests are often more powerful than other existing tests, especially under non-proportional hazard functions.
Metadata about populations and data about samples from the 1000 Genomes Project, including the 2,504 samples sequenced for the Phase 3 release and the expanded collection of 3,202 samples with 602 additional trios. The data is described in Auton et al. (2015) <doi:10.1038/nature15393> and Byrska-Bishop et al. (2022) <doi:10.1016/j.cell.2022.08.004>, and raw data is available at <http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/>. See Turner (2022) <doi:10.48550/arXiv.2210.00539> for more details.
Used to create dynamic, interactive D3.js based parallel coordinates and principal component plots in R'. The plots make visualizing k-means or other clusters simple and informative.
The developed function is designed to facilitate the seamless conversion of KML (Keyhole Markup Language) files to Shapefiles while preserving attribute values. It provides a straightforward interface for users to effortlessly import KML data, extract relevant attributes, and export them into the widely compatible Shapefile format. The package ensures accurate representation of spatial data while maintaining the integrity of associated attribute information. For details see, Flores, G. (2021). <DOI:10.1007/978-3-030-63665-4_15>. Whether for spatial analysis, visualization, or data interoperability, it simplifies the conversion process and empowers users to seamlessly work with geospatial datasets.
Computes Khattree-Bahuguna's univariate and multivariate skewness, principal-component-based Khattree-Bahuguna's multivariate skewness. It also provides several measures of univariate or multivariate skewnesses including, Pearsonâ s coefficient of skewness, Bowleyâ s univariate skewness and Mardia's multivariate skewness. See Khattree, R. and Bahuguna, M. (2019) <doi: 10.1007/s41060-018-0106-1>.
This package provides an implementation of a kernel-embedding of probability test for elliptical distribution. This is an asymptotic test for elliptical distribution under general alternatives, and the location and shape parameters are assumed to be unknown. Some side-products are posted, including the transformation between rectangular and polar coordinates and two product-type kernel functions. See Tang and Li (2024) <doi:10.48550/arXiv.2306.10594> for details.
This package implements the Known Sub-Sequence Algorithm <doi:10.1016/j.aaf.2021.12.013>, which helps to automatically identify and validate the best method for missing data imputation in a time series. Supports the comparison of multiple state-of-the-art algorithms.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstIO package provides basic functionalities to read and write KST data from/to files to be used together with the kst', kstMatrix', CDSS', pks', or DAKS packages.
Predicts any variable in any categorical dataset for given values of predictor variables. If a dataset contains 4 variables, then any variable can be predicted based on the values of the other three variables given by the user. The user can upload their own datasets and select what variable they want to predict. A handsontable is provided to enter the predictor values and also accuracy of the prediction is also shown.
Provide routines for filtering and smoothing, forecasting, sampling and Bayesian analysis of Dynamic Generalized Linear Models using the methodology described in Alves et al. (2024)<doi:10.48550/arXiv.2201.05387> and dos Santos Jr. et al. (2024)<doi:10.48550/arXiv.2403.13069>.
Makes visually pleasing diagrams of knot projections using optimized Bezier curves.
Wait for a single key press at the R prompt. This works in terminals, but does not currently work in the Windows GUI', the OS X GUI ('R.app'), in Emacs ESS', in an Emacs shell buffer or in R Studio'. In these cases keypress stops with an error message.