Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tests the homogeneity of intraclass kappa statistics obtained from independent studies or a stratified study with binary results. It is desired to compare the kappa statistics obtained in multi-center studies or in a single stratified study to give a common or summary kappa using all available information. If the homogeneity test of these kappa statistics is not rejected, then it is possible to make inferences over a single kappa statistic that summarizes all the studies. Muammer Albayrak, Kemal Turhan, Yasemin Yavuz, Zeliha Aydin Kasap (2019) <doi:10.1080/03610918.2018.1538457> Jun-mo Nam (2003) <doi:10.1111/j.0006-341X.2003.00118.x> Jun-mo Nam (2005) <doi:10.1002/sim.2321>Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney,Debajyoti Sinha (1999) <doi:10.2307/3315487> Allan Donner, Michael Eliasziw, Neil Klar (1996) <doi:10.2307/2533154>.
Wrapper for Kobotoolbox APIs ver 2 mentioned at <https://support.kobotoolbox.org/api.html>, to download data from Kobotoolbox to R. Small and simple package that adds immense convenience for the data professionals using Kobotoolbox'.
Criteria and algorithms for sequentially estimating level sets of a multivariate numerical function, possibly observed with noise.
Rcpp implementation of the multivariate Kim filter, which combines the Kalman and Hamilton filters for state probability inference. The filter is designed for state space models and can handle missing values and exogenous data in the observation and state equations. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
This is designed for use with an arbitrary set of equations with an arbitrary set of unknowns. The user selects "fixed" values for enough unknowns to leave as many variables as there are equations, which in most cases means the system is properly defined and a unique solution exists. The function, the fixed values and initial values for the remaining unknowns are fed to a nonlinear backsolver. The original version of "TK!Solver" , now a product of Universal Technical Systems (<https://www.uts.com>) was the inspiration for this function.
Data on houses in and around Seattle WA are included. Basic characteristics are given along with sale prices.
Convert latex math expressions to HTML and MathML for use in markdown documents or package manual pages. The rendering is done in R using the V8 engine (i.e. server-side), which eliminates the need for embedding the MathJax library into your web pages. In addition a math-to-rd wrapper is provided to automatically render beautiful math in R documentation files.
Identification of putative causal variants in genome-wide association studies using hybrid analysis of both the trio and population designs. The package implements the method in the paper: Yang, Y., Wang, Q., Wang, C., Buxbaum, J., & Ionita-Laza, I. (2024). KnockoffHybrid: A knockoff framework for hybrid analysis of trio and population designs in genome-wide association studies. The American Journal of Human Genetics, in press.
This package contains kernel smoothing tools designed for use by historical dialectologists and philologists for exploring spatial and temporal patterns in noisy historical language data, such as that obtained from historical texts. The main way in which these might differ from other implementations of kernel smoothing is that they assume that the function (linguistic variable) being explored has the form of the relative frequency of a series of discrete possibilities (linguistic variants). This package also offers a way of exploring distributions in 2-dimensional space and in time with separate kernels, and tools for identifying appropriate bandwidths for these.
Demo and dataset accompaying the books : De l'analyse des réseaux expérimentaux à la méta-analyse: Méthodes et applications avec le logiciel R pour les sciences agronomiques et environnementales (Published 2018-06-28, Quae, for french version) by David Makowski, Francois Piraux and Francois Brun - <https://www.quae.com/produit/1514/9782759228164/de-l-analyse-des-reseaux-experimentaux-a-la-meta-analyse> Knowledge Synthesis in Agriculture : from Experimental Network to Meta-Analysis (in preparation for 2018-06, Springer , for English version) by David Makowski, Francois Piraux and Francois Brun A full description of all the material is in both books. ACKNOWLEDGMENTS : The French network "RMT modeling and data analysis for agriculture" (<http://www.modelia.org>) have contributed to the development of this R package. This project and network are lead by ACTA (French Technical Institute for Agriculture) and was funded by a grant from the Ministry of Agriculture and Fishing of France.
Rcpp implementation of the multivariate Kalman filter for state space models that can handle missing values and exogenous data in the observation and state equations. There is also a function to handle time varying parameters. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Using this package you can combine known kinase substrate relationships with experimental data and determine active kinases and their substrates.
This package infers relative kinase activity from phosphoproteomics data using the method described by Casado et al. (2013) <doi:10.1126/scisignal.2003573>.
This package provides a novel implementation that solves the linear distance weighted discrimination and the kernel distance weighted discrimination. Reference: Wang and Zou (2018) <doi:10.1111/rssb.12244>.
This package provides a comprehensive set of geostatistical, visual, and analytical methods, in conjunction with the expanded version of the acclaimed J.E. Klovan's mining dataset, are included in klovan'. This makes the package an excellent learning resource for Principal Component Analysis (PCA), Factor Analysis (FA), kriging, and other geostatistical techniques. Originally published in the 1976 book Geological Factor Analysis', the included mining dataset was assembled by Professor J. E. Klovan of the University of Calgary. Being one of the first applications of FA in the geosciences, this dataset has significant historical importance. As a well-regarded and published dataset, it is an excellent resource for demonstrating the capabilities of PCA, FA, kriging, and other geostatistical techniques in geosciences. For those interested in these methods, the klovan datasets provide a valuable and illustrative resource. Note that some methods require the RGeostats package. Please refer to the README or Additional_repositories for installation instructions. This material is based upon research in the Materials Data Science for Stockpile Stewardship Center of Excellence (MDS3-COE), and supported by the Department of Energy's National Nuclear Security Administration under Award Number DE-NA0004104.
This package provides a set of tools to analyze texts. Includes, amongst others, functions for automatic language detection, hyphenation, several indices of lexical diversity (e.g., type token ratio, HD-D/vocd-D, MTLD) and readability (e.g., Flesch, SMOG, LIX, Dale-Chall). Basic import functions for language corpora are also provided, to enable frequency analyses (supports Celex and Leipzig Corpora Collection file formats) and measures like tf-idf. Note: For full functionality a local installation of TreeTagger is recommended. It is also recommended to not load this package directly, but by loading one of the available language support packages from the l10n repository <https://undocumeantit.github.io/repos/l10n/>. koRpus also includes a plugin for the R GUI and IDE RKWard, providing graphical dialogs for its basic features. The respective R package rkward cannot be installed directly from a repository, as it is a part of RKWard. To make full use of this feature, please install RKWard from <https://rkward.kde.org> (plugins are detected automatically). Due to some restrictions on CRAN, the full package sources are only available from the project homepage. To ask for help, report bugs, request features, or discuss the development of the package, please subscribe to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
Access business registration data from the Dutch Chamber of Commerce (Kamer van Koophandel, KvK) through their official API <https://developers.kvk.nl/>. Search for companies by name, location, or registration number. Retrieve detailed business profiles, establishment information, and company name histories. Built on httr2 for robust API interaction with automatic pagination, error handling, and usage tracking.
This package contains basic tools for sample size estimation in studies of interobserver/interrater agreement (reliability). Includes functions for both the power-based and confidence interval-based methods, with binary or multinomial outcomes and two through six raters.
This package provides a wrapper for querying WISKI databases via the KiWIS REST API. WISKI is an SQL relational database used for the collection and storage of water data developed by KISTERS and KiWIS is a REST service that provides access to WISKI databases via HTTP requests (<https://www.kisters.eu/water-weather-and-environment/>). Contains a list of default databases (called hubs') and also allows users to provide their own KiWIS URL. Supports the entire query process- from metadata to specific time series values. All data is returned as tidy tibbles.
This package provides functions to identify plausible and replicable factor structures for a set of variables via k-fold cross validation. The process combines the exploratory and confirmatory factor analytic approach to scale development (Flora & Flake, 2017) <doi:10.1037/cbs0000069> with a cross validation technique that maximizes the available data (Hastie, Tibshirani, & Friedman, 2009) <isbn:978-0-387-21606-5>. Also available are functions to determine k by drawing on power analytic techniques for covariance structures (MacCallum, Browne, & Sugawara, 1996) <doi:10.1037/1082-989X.1.2.130>, generate model syntax, and summarize results in a report.
Efficient implementation of permutation tests for keyword analysis in corpus linguistics as described in Mildenberger (2023) <arXiv:2308.13383>.
This package provides a streamlined cross-referencing system for R Markdown documents generated with knitr'. R Markdown is an authoring format for generating dynamic content from R. kfigr provides a hook for anchoring code chunks and a function to cross-reference document elements generated from said chunks, e.g. figures and tables.
This package implements the Kidney Failure Risk Equation (KFRE; Tangri and colleagues (2011) <doi:10.1001/jama.2011.451>; Tangri and colleagues (2016) <doi:10.1001/jama.2015.18202>) to compute 2- and 5-year kidney failure risk using 4-, 6-, and 8-variable models. Includes helpers to append risk columns to data frames, classify chronic kidney disease (CKD) stages and end-stage renal disease (ESRD) outcomes, and evaluate and plot model performance.
Handles univariate non-parametric density estimation with parametric starts and asymmetric kernels in a simple and flexible way. Kernel density estimation with parametric starts involves fitting a parametric density to the data before making a correction with kernel density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>. Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>, the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>. User-supplied kernels, parametric starts, and bandwidths are supported.