Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to search, retrieve, apply and update classification standards and code lists using Statistics Norway's API <https://www.ssb.no/klass> from the system KLASS'. Retrieves classifications by date with options to choose language, hierarchical level and formatting.
Training and evaluating k-gram language models in R, supporting several probability smoothing techniques, perplexity computations, random text generation and more.
Search and download data from the API for Japanese Diet Proceedings (see the reference at <https://kokkai.ndl.go.jp/api.html>).
Gaussian process regression with an emphasis on kernels. Quantitative and qualitative inputs are accepted. Some pre-defined kernels are available, such as radial or tensor-sum for quantitative inputs, and compound symmetry, low rank, group kernel for qualitative inputs. The user can define new kernels and composite kernels through a formula mechanism. Useful methods include parameter estimation by maximum likelihood, simulation, prediction and leave-one-out validation.
This package provides arrays with flexible control over dimension dropping when subscripting.
This package provides a collection of functions for analyzing data typically collected or used by behavioral scientists. Examples of the functions include a function that compares groups in a factorial experimental design, a function that conducts two-way analysis of variance (ANOVA), and a function that cleans a data set generated by Qualtrics surveys. Some of the functions will require installing additional package(s). Such packages and other references are cited within the section describing the relevant functions. Many functions in this package rely heavily on these two popular R packages: Dowle et al. (2021) <https://CRAN.R-project.org/package=data.table>. Wickham et al. (2021) <https://CRAN.R-project.org/package=ggplot2>.
An implementation of k-means specifically design to cluster longitudinal data. It provides facilities to deal with missing value, compute several quality criterion (Calinski and Harabatz, Ray and Turie, Davies and Bouldin, BIC, ...) and propose a graphical interface for choosing the best number of clusters.
This package provides a set of tools to analyze texts. Includes, amongst others, functions for automatic language detection, hyphenation, several indices of lexical diversity (e.g., type token ratio, HD-D/vocd-D, MTLD) and readability (e.g., Flesch, SMOG, LIX, Dale-Chall). Basic import functions for language corpora are also provided, to enable frequency analyses (supports Celex and Leipzig Corpora Collection file formats) and measures like tf-idf. Note: For full functionality a local installation of TreeTagger is recommended. It is also recommended to not load this package directly, but by loading one of the available language support packages from the l10n repository <https://undocumeantit.github.io/repos/l10n/>. koRpus also includes a plugin for the R GUI and IDE RKWard, providing graphical dialogs for its basic features. The respective R package rkward cannot be installed directly from a repository, as it is a part of RKWard. To make full use of this feature, please install RKWard from <https://rkward.kde.org> (plugins are detected automatically). Due to some restrictions on CRAN, the full package sources are only available from the project homepage. To ask for help, report bugs, request features, or discuss the development of the package, please subscribe to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
Implementation of Discrete Symmetric Optimal Kernel for estimating count data distributions, as described by T. Senga Kiessé and G. Durrieu (2024) <doi:10.1016/j.spl.2024.110078>.The nonparametric estimator using the discrete symmetric optimal kernel was illustrated on simulated data sets and a real-word data set included in the package, in comparison with two other discrete symmetric kernels.
This package implements estimation procedures for Autoregressive Distributed Lag (ARDL) and Nonlinear ARDL (NARDL) models, which allow researchers to investigate both short- and long-run relationships in time series data under mixed orders of integration. The package supports simultaneous modeling of symmetric and asymmetric regressors, flexible treatment of short-run and long-run asymmetries, and automated equation handling. It includes several cointegration testing approaches such as the Pesaran-Shin-Smith F and t bounds tests, the Banerjee error correction test, and the restricted ECM test, together with diagnostic tools including Wald tests for asymmetry, ARCH tests, and stability procedures (CUSUM and CUSUMQ). Methodological foundations are provided in Pesaran, Shin, and Smith (2001) <doi:10.1016/S0304-4076(01)00049-5> and Shin, Yu, and Greenwood-Nimmo (2014, ISBN:9780123855079).
This package provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. See Geenens (2014) <doi:10.48550/arXiv.1303.4121>, Geenens and Wang (2018) <doi:10.48550/arXiv.1602.04862>, Nagler (2018a) <doi:10.48550/arXiv.1704.07457>, Nagler (2018b) <doi:10.48550/arXiv.1705.05431>.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstMatrix package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces. Opposed to the kst package, kstMatrix uses matrix representations for knowledge structures. Furthermore, kstMatrix contains several knowledge spaces developed by the research group around Cornelia Dowling through querying experts.
Restore underlining numeric data from rating history graph of KGS (an online platform of the game of go, <http://www.gokgs.com/>). A shiny application is also provided.
Estimates kriging models for geographical point-referenced data. Method is described in Gill (2020) <doi:10.1177/1532440020930197>.
This package provides methods to extract information on pathways, genes and various single-nucleotid polymorphisms (SNPs) from online databases. It provides functions for data preparation and evaluation of genetic influence on a binary outcome using the logistic kernel machine test (LKMT). Three different kernel functions are offered to analyze genotype information in this variance component test: A linear kernel, a size-adjusted kernel and a network-based kernel).
Read Swiss time series data from the KOF Data API, <https://datenservice.kof.ethz.ch>. The API provides macro economic time series data mostly about Switzerland. The package itself is a set of wrappers around the KOF Datenservice API. The kofdata package is able to consume public information as well as data that requires an API token.
Identification of putative causal variants in genome-wide association studies using hybrid analysis of both the trio and population designs. The package implements the method in the paper: Yang, Y., Wang, Q., Wang, C., Buxbaum, J., & Ionita-Laza, I. (2024). KnockoffHybrid: A knockoff framework for hybrid analysis of trio and population designs in genome-wide association studies. The American Journal of Human Genetics, in press.
Smoothed bootstrap and functions for random generation from univariate and multivariate kernel densities. It does not estimate kernel densities.
Algorithms of distance-based k-medoids clustering: simple and fast k-medoids, ranked k-medoids, and increasing number of clusters in k-medoids. Calculate distances for mixed variable data such as Gower, Podani, Wishart, Huang, Harikumar-PV, and Ahmad-Dey. Cluster validation applies internal and relative criteria. The internal criteria includes silhouette index and shadow values. The relative criterium applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages. The cluster result can be plotted in a marked barplot or pca biplot.
Implementation of various kernel adaptive methods in nonparametric curve estimation like density estimation as introduced in Stute and Srihera (2011) <doi:10.1016/j.spl.2011.01.013> and Eichner and Stute (2013) <doi:10.1016/j.jspi.2012.03.011> for pointwise estimation, and like regression as described in Eichner and Stute (2012) <doi:10.1080/10485252.2012.760737>.
Kernel Fisher Discriminant Analysis (KFDA) is performed using Kernel Principal Component Analysis (KPCA) and Fisher Discriminant Analysis (FDA). There are some similar packages. First, lfda is a package that performs Local Fisher Discriminant Analysis (LFDA) and performs other functions. In particular, lfda seems to be impossible to test because it needs the label information of the data in the function argument. Also, the ks package has a limited dimension, which makes it difficult to analyze properly. This package is a simple and practical package for KFDA based on the paper of Yang, J., Jin, Z., Yang, J. Y., Zhang, D., and Frangi, A. F. (2004) <DOI:10.1016/j.patcog.2003.10.015>.
Prediction with k* nearest neighbor algorithm based on a publication by Anava and Levy (2016) <arXiv:1701.07266>.
Software for k-means clustering of partially observed data from Chi, Chi, and Baraniuk (2016) <doi:10.1080/00031305.2015.1086685>.
Machine learning, containing several algorithms for supervised and unsupervised classification, in addition to a function that plots the Receiver Operating Characteristic (ROC) and Precision-Recall (PRC) curve graphs, and also a function that returns several metrics used for model evaluation, the latter can be used in ranking results from other packs.