Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package infers relative kinase activity from phosphoproteomics data using the method described by Casado et al. (2013) <doi:10.1126/scisignal.2003573>.
Color schemes ready for each type of data (qualitative, diverging or sequential), with colors that are distinct for all people, including color-blind readers. This package provides an implementation of Paul Tol (2018) and Fabio Crameri (2018) <doi:10.5194/gmd-11-2541-2018> color schemes for use with graphics or ggplot2'. It provides tools to simulate color-blindness and to test how well the colors of any palette are identifiable. Several scientific thematic schemes (geologic timescale, land cover, FAO soils, etc.) are also implemented.
Simulating species migration and range dynamics under stable or changing environmental conditions based on a simple, raster-based, deterministic or stochastic migration model. KISSMig runs on binary or quantitative suitability maps, which are pre-calculated with niche-based habitat suitability models (also called ecological niche models (ENMs) or species distribution models (SDMs)). Nobis & Normand (2014), <doi:10.1111/ecog.00930>.
Search and download data from the API for Japanese Diet Proceedings (see the reference at <https://kokkai.ndl.go.jp/api.html>).
Estimate agreement of a group of raters with a gold standard rating on a nominal scale. For a single gold standard rater the average pairwise agreement of raters with this gold standard is provided. For a group of (gold standard) raters the approach of S. Vanbelle, A. Albert (2009) <doi:10.1007/s11336-009-9116-1> is implemented. Bias and standard error are estimated via delete-1 jackknife.
The computational complexity of the implemented algorithm for Kendall's correlation is O(n log(n)), which is faster than the base R implementation with a computational complexity of O(n^2). For small vectors (i.e., less than 100 observations), the time difference is negligible. However, for larger vectors, the speed difference can be substantial and the numerical difference is minimal. The references are Knight (1966) <doi:10.2307/2282833>, Abrevaya (1999) <doi:10.1016/S0165-1765(98)00255-9>, Christensen (2005) <doi:10.1007/BF02736122> and Emara (2024) <https://learningcpp.org/>. This implementation is described in Vargas Sepulveda (2025) <doi:10.1371/journal.pone.0326090>.
This package provides an implementation of a kernel-embedding of probability test for elliptical distribution. This is an asymptotic test for elliptical distribution under general alternatives, and the location and shape parameters are assumed to be unknown. Some side-products are posted, including the transformation between rectangular and polar coordinates and two product-type kernel functions. See Tang and Li (2024) <doi:10.48550/arXiv.2306.10594> for details.
Tests the homogeneity of intraclass kappa statistics obtained from independent studies or a stratified study with binary results. It is desired to compare the kappa statistics obtained in multi-center studies or in a single stratified study to give a common or summary kappa using all available information. If the homogeneity test of these kappa statistics is not rejected, then it is possible to make inferences over a single kappa statistic that summarizes all the studies. Muammer Albayrak, Kemal Turhan, Yasemin Yavuz, Zeliha Aydin Kasap (2019) <doi:10.1080/03610918.2018.1538457> Jun-mo Nam (2003) <doi:10.1111/j.0006-341X.2003.00118.x> Jun-mo Nam (2005) <doi:10.1002/sim.2321>Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney,Debajyoti Sinha (1999) <doi:10.2307/3315487> Allan Donner, Michael Eliasziw, Neil Klar (1996) <doi:10.2307/2533154>.
Using this package you can combine known kinase substrate relationships with experimental data and determine active kinases and their substrates.
This package provides a function that uses a genetic algorithm to search for a subset of size k from the integers 1:n, such that a user-supplied objective function is minimized at that subset. The selection step is done by tournament selection based on ranks, and elitism may be used to retain a portion of the best solutions from one generation to the next. Population objective function values may optionally be evaluated in parallel.
This package provides fast implementations of kernel smoothing techniques for bivariate copula densities, in particular density estimation and resampling, see Nagler (2018) <doi:10.18637/jss.v084.i07>.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstIO package provides basic functionalities to read and write KST data from/to files to be used together with the kst', kstMatrix', CDSS', pks', or DAKS packages.
This package provides a novel implementation that solves the linear distance weighted discrimination and the kernel distance weighted discrimination. Reference: Wang and Zou (2018) <doi:10.1111/rssb.12244>.
This package provides arrays with flexible control over dimension dropping when subscripting.
Kernel-based Tweedie compound Poisson gamma model using high-dimensional predictors for the analyses of zero-inflated response variables. The package features built-in estimation, prediction and cross-validation tools and supports choice of different kernel functions. For more details, please see Yi Lian, Archer Yi Yang, Boxiang Wang, Peng Shi & Robert William Platt (2023) <doi:10.1080/00401706.2022.2156615>.
Collection of utility functions used in the KEHRA project (see http://www.brunel.ac.uk/ife/britishcouncil). It refers to the multidimensional analysis of air pollution, weather and health data.
Handles univariate non-parametric density estimation with parametric starts and asymmetric kernels in a simple and flexible way. Kernel density estimation with parametric starts involves fitting a parametric density to the data before making a correction with kernel density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>. Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>, the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>. User-supplied kernels, parametric starts, and bandwidths are supported.
Wait for a single key press at the R prompt. This works in terminals, but does not currently work in the Windows GUI', the OS X GUI ('R.app'), in Emacs ESS', in an Emacs shell buffer or in R Studio'. In these cases keypress stops with an error message.
This package provides methods for selecting the optimal bandwidth in kernel density estimation for dependent samples, such as those generated by Markov chain Monte Carlo (MCMC). Implements a modified biased cross-validation (mBCV) approach that accounts for sample dependence, improving the accuracy of estimated density functions.
Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145. <doi:10.3389/fgene.2016.00145>.
Estimation algorithms for Kullback-Leibler divergence between two probability distributions, based on one or two samples, and including uncertainty quantification. Distributions can be uni- or multivariate and continuous, discrete or mixed.
It predicts any attribute (categorical) given a set of input numeric predictor values. Note that only numeric input predictors should be given. The k value can be chosen according to accuracies provided. The attribute to be predicted can be selected from the dropdown provided (select categorical attribute). This is because categorical attributes cannot be given as inputs here. A handsontable is also provided to enter the input predictor values.
Miscellaneous functions and data used in psychological research and teaching. Keng currently has a built-in dataset depress, and could (1) scale a vector; (2) compute the cut-off values of Pearson's r with known sample size; (3) test the significance and compute the post-hoc power for Pearson's r with known sample size; (4) conduct a priori power analysis and plan the sample size for Pearson's r; (5) compare lm()'s fitted outputs using R-squared, f_squared, post-hoc power, and PRE (Proportional Reduction in Error, also called partial R-squared or partial Eta-squared); (6) calculate PRE from partial correlation, Cohen's f, or f_squared; (7) conduct a priori power analysis and plan the sample size for one or a set of predictors in regression analysis; (8) conduct post-hoc power analysis for one or a set of predictors in regression analysis with known sample size; (9) randomly pick numbers for Chinese Super Lotto and Double Color Balls; (10) assess course objective achievement in Outcome-Based Education.
One-way and two-way analysis of variance for replicated point patterns, grouped by one or two classification factors, on the basis of the corresponding K-functions.