Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the vine copula based kernel density estimator of Nagler and Czado (2016) <doi:10.1016/j.jmva.2016.07.003>. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications.
Algorithms of distance-based k-medoids clustering: simple and fast k-medoids, ranked k-medoids, and increasing number of clusters in k-medoids. Calculate distances for mixed variable data such as Gower, Podani, Wishart, Huang, Harikumar-PV, and Ahmad-Dey. Cluster validation applies internal and relative criteria. The internal criteria includes silhouette index and shadow values. The relative criterium applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages. The cluster result can be plotted in a marked barplot or pca biplot.
Detect and test for changes in covariance structures of functional data, as well as changepoint detection for multivariate data more generally. Method for detecting non-stationarity in resting state functional Magnetic Resonance Imaging (fMRI) scans as seen in Ramsay, K., & Chenouri, S. (2025) <doi:10.1080/10485252.2025.2503891> is implemented in fmri_changepoints(). Also includes depth- and rank-based implementation of the wild binary segmentation algorithm for detecting multiple changepoints in multivariate data.
This package provides a variable selection procedure, dubbed KKO, for nonparametric additive model with finite-sample false discovery rate control guarantee. The method integrates three key components: knockoffs, subsampling for stability, and random feature mapping for nonparametric function approximation. For more information, see the accompanying paper: Dai, X., Lyu, X., & Li, L. (2021). â Kernel Knockoffs Selection for Nonparametric Additive Modelsâ . arXiv preprint <arXiv:2105.11659>.
Application of a Known Biomass Production Model (KBPM): (1) the fitting of KBPM to each stock; (2) the estimation of the effects of environmental variability; (3) the retrospective analysis to identify regime shifts; (4) the estimation of forecasts. For more details see Schaefer (1954) <https://www.iattc.org/GetAttachment/62d510ee-13d0-40f2-847b-0fde415476b8/Vol-1-No-2-1954-SCHAEFER,-MILNER-B-_Some-aspects-of-the-dynamics-of-populations-important-to-the-management-of-the-commercial-marine-fisheries.pdf>, Pella and Tomlinson (1969) <https://www.iattc.org/GetAttachment/9865079c-6ee7-40e2-9e30-c4523ff81ddf/Vol-13-No-3-1969-PELLA,-JEROME-J-,-and-PATRICK-K-TOMLINSON_A-generalized-stock-production-model.pdf> and MacCall (2002) <doi:10.1577/1548-8675(2002)022%3C0272:UOKBPM%3E2.0.CO;2>.
Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145. <doi:10.3389/fgene.2016.00145>.
Analysis of DNA copy number in single cells using custom genome-wide targeted DNA sequencing panels for the Mission Bio Tapestri platform. Users can easily parse, manipulate, and visualize datasets produced from the automated Tapestri Pipeline', with support for normalization, clustering, and copy number calling. Functions are also available to deconvolute multiplexed samples by genotype and parsing barcoded reads from exogenous lentiviral constructs.
Kendall random walks are a continuous-space Markov chains generated by the Kendall generalized convolution. This package provides tools for simulating these random walks and studying distributions related to them. For more information about Kendall random walks see Jasiulis-GoÅ dyn (2014) <arXiv:1412.0220>.
This package implements the Lilliefors-corrected Kolmogorov-Smirnov test for use in goodness-of-fit tests, suitable when population parameters are unknown and must be estimated by sample statistics. P-values are estimated by simulation. Can be used with a variety of continuous distributions, including normal, lognormal, univariate mixtures of normals, uniform, loguniform, exponential, gamma, and Weibull distributions. Functions to generate random numbers and calculate density, distribution, and quantile functions are provided for use with the log uniform and mixture distributions.
Implementations of two empirical versions the kernel partial correlation (KPC) coefficient and the associated variable selection algorithms. KPC is a measure of the strength of conditional association between Y and Z given X, with X, Y, Z being random variables taking values in general topological spaces. As the name suggests, KPC is defined in terms of kernels on reproducing kernel Hilbert spaces (RKHSs). The population KPC is a deterministic number between 0 and 1; it is 0 if and only if Y is conditionally independent of Z given X, and it is 1 if and only if Y is a measurable function of Z and X. One empirical KPC estimator is based on geometric graphs, such as K-nearest neighbor graphs and minimum spanning trees, and is consistent under very weak conditions. The other empirical estimator, defined using conditional mean embeddings (CMEs) as used in the RKHS literature, is also consistent under suitable conditions. Using KPC, a stepwise forward variable selection algorithm KFOCI (using the graph based estimator of KPC) is provided, as well as a similar stepwise forward selection algorithm based on the RKHS based estimator. For more details on KPC, its empirical estimators and its application on variable selection, see Huang, Z., N. Deb, and B. Sen (2022). â Kernel partial correlation coefficient â a measure of conditional dependenceâ (URL listed below). When X is empty, KPC measures the unconditional dependence between Y and Z, which has been described in Deb, N., P. Ghosal, and B. Sen (2020), â Measuring association on topological spaces using kernels and geometric graphsâ <arXiv:2010.01768>, and it is implemented in the functions KMAc() and Klin() in this package. The latter can be computed in near linear time.
Software for k-means clustering of partially observed data from Chi, Chi, and Baraniuk (2016) <doi:10.1080/00031305.2015.1086685>.
Computes the Kantorovich distance between two probability measures on a finite set. The Kantorovich distance is also known as the Monge-Kantorovich distance or the first Wasserstein distance.
This package provides a multi-purpose and flexible k-meric enrichment analysis software. kmeRtone measures the enrichment of k-mers by comparing the population of k-mers in the case loci with a carefully devised internal negative control group, consisting of k-mers from regions close to, yet sufficiently distant from, the case loci to mitigate any potential sequencing bias. This method effectively captures both the local sequencing variations and broader sequence influences, while also correcting for potential biases, thereby ensuring more accurate analysis. The core functionality of kmeRtone is the SCORE() function, which calculates the susceptibility scores for k-mers in case and control regions. Case regions are defined by the genomic coordinates provided in a file by the user and the control regions can be constructed relative to the case regions or provided directly. The k-meric susceptibility scores are calculated by using a one-proportion z-statistic. kmeRtone is highly flexible by allowing users to also specify their target k-mer patterns and quantify the corresponding k-mer enrichment scores in the context of these patterns, allowing for a more comprehensive approach to understanding the functional implications of specific DNA sequences on a genomic scale (e.g., CT motifs upon UV radiation damage). Adib A. Abdullah, Patrick Pflughaupt, Claudia Feng, Aleksandr B. Sahakyan (2024) Bioinformatics (submitted).
This package provides a function called COTUCKER3() (Co-Inertia Analysis + Tucker3 method) which performs a Co-Tucker3 analysis of two sequences of matrices, as well as other functions called PCA() (Principal Component Analysis) and BGA() (Between-Groups Analysis), which perform analysis of one matrix, COIA() (Co-Inertia Analysis), which performs analysis of two matrices, PTA() (Partial Triadic Analysis), STATIS(), STATISDUAL() and TUCKER3(), which perform analysis of a sequence of matrices, and BGCOIA() (Between-Groups Co-Inertia Analysis), STATICO() (STATIS method + Co-Inertia Analysis), COSTATIS() (Co-Inertia Analysis + STATIS method), which also perform analysis of two sequences of matrices.
This package provides a shiny app to visualize the knowledge networks for the code concepts. Using co-occurrence matrices of EHR codes from Veterans Affairs (VA) and Massachusetts General Brigham (MGB), the knowledge extraction via sparse embedding regression (KESER) algorithm was used to construct knowledge networks for the code concepts. Background and details about the method can be found at Chuan et al. (2021) <doi:10.1038/s41746-021-00519-z>.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstMatrix package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces. Opposed to the kst package, kstMatrix uses matrix representations for knowledge structures. Furthermore, kstMatrix contains several knowledge spaces developed by the research group around Cornelia Dowling through querying experts.
Uses Bessel functions to calculate the fundamental and complementary analytic solutions to the Kelvin differential equation.
This package provides a user-friendly interface for interacting with the District Health Information Software 2 (DHIS2) instance. It streamlines data retrieval, empowering researchers, analysts, and healthcare professionals to obtain and utilize data efficiently.
This package provides fast implementations of kernel smoothing techniques for bivariate copula densities, in particular density estimation and resampling, see Nagler (2018) <doi:10.18637/jss.v084.i07>.
Aids in identifying the Koeppen-Geiger (KG) climatic zone for a given location. The Koeppen-Geiger climate zones were first published in 1884, as a system to classify regions of the earth by their relative heat and humidity through the year, for the benefit of human health, plant and agriculture and other human activity [1]. This climate zone classification system, applicable to all of the earths surface, has continued to be developed by scientists up to the present day. Recently one of use (FZ) has published updated, higher accuracy KG climate zone definitions [2]. In this package we use these updated high-resolution maps as the data source [3]. We provide functions that return the KG climate zone for a given longitude and lattitude, or for a given United States zip code. In addition the CZUncertainty() function will check climate zones nearby to check if the given location is near a climate zone boundary. In addition an interactive shiny app is provided to define the KG climate zone for a given longitude and lattitude, or United States zip code. Digital data, as well as animated maps, showing the shift of the climate zones are provided on the following website <http://koeppen-geiger.vu-wien.ac.at>. This work was supported by the DOE-EERE SunShot award DE-EE-0007140. [1] W. Koeppen, (2011) <doi:10.1127/0941-2948/2011/105>. [2] F. Rubel and M. Kottek, (2010) <doi:10.1127/0941-2948/2010/0430>. [3] F. Rubel, K. Brugger, K. Haslinger, and I. Auer, (2016) <doi:10.1127/metz/2016/0816>.
Computes measures of multivariate kurtosis, matrices of fourth-order moments and cumulants, kurtosis-based projection pursuit. Franceschini, C. and Loperfido, N. (2018, ISBN:978-3-319-73905-2). "An Algorithm for Finding Projections with Extreme Kurtosis". Loperfido, N. (2017,ISSN:0024-3795). "A New Kurtosis Matrix, with Statistical Applications".
In self-reported or anonymised data the user often encounters heaped data, i.e. data which are rounded (to a possibly different degree of coarseness). While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Varying rounding probabilities (depending on the true value) and asymmetric rounding is estimable as well: Gross, M. and Rendtel, U. (2016) (<doi:10.1093/jssam/smw011>). Additionally, bivariate non-parametric density estimation for rounded data, Gross, M. et al. (2016) (<doi:10.1111/rssa.12179>), as well as data aggregated on areas is supported.
Write beautiful yet customizable letters in R Markdown and directly obtain the finished PDF. Smooth generation of PDFs is realized by rmarkdown', the pandoc-letter template and the KOMA-Script letter class. KOMA-Script provides enhanced replacements for the standard LaTeX classes with emphasis on typography and versatility. KOMA-Script is particularly useful for international writers as it handles various paper formats well, provides layouts for many common window envelope types (e.g. German, US, French, Japanese) and lets you define your own layouts. The package comes with a default letter layout based on DIN 5008B'.
This package provides a collection of functions for analyzing data typically collected or used by behavioral scientists. Examples of the functions include a function that compares groups in a factorial experimental design, a function that conducts two-way analysis of variance (ANOVA), and a function that cleans a data set generated by Qualtrics surveys. Some of the functions will require installing additional package(s). Such packages and other references are cited within the section describing the relevant functions. Many functions in this package rely heavily on these two popular R packages: Dowle et al. (2021) <https://CRAN.R-project.org/package=data.table>. Wickham et al. (2021) <https://CRAN.R-project.org/package=ggplot2>.