_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bvar 1.0.5
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/nk027/bvar
Licenses: GPL 3 FSDG-compatible
Synopsis: Hierarchical Bayesian Vector Autoregression
Description:

Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.

r-brulee 0.6.0
Propagated dependencies: r-torch@0.16.3 r-tibble@3.3.0 r-rlang@1.1.6 r-hardhat@1.4.2 r-glue@1.8.0 r-ggplot2@4.0.1 r-generics@0.1.4 r-dplyr@1.1.4 r-coro@1.1.0 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/tidymodels/brulee
Licenses: Expat
Synopsis: High-Level Modeling Functions with 'torch'
Description:

This package provides high-level modeling functions to define and train models using the torch R package. Models include linear, logistic, and multinomial regression as well as multilayer perceptrons.

r-bayesfmri 0.10.1
Propagated dependencies: r-viridislite@0.4.2 r-sp@2.2-0 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-matrixstats@1.5.0 r-matrix@1.7-4 r-mass@7.3-65 r-foreach@1.5.2 r-fmritools@0.6.0 r-excursions@2.5.11 r-ciftitools@0.18.0 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/mandymejia/BayesfMRI
Licenses: GPL 3
Synopsis: Spatial Bayesian Methods for Task Functional MRI Studies
Description:

This package performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the CIFTI neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020) <doi:10.1080/01621459.2019.1611582> and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022) <doi:10.1016/j.neuroimage.2022.118908>.

r-bage 0.10.2
Propagated dependencies: r-vctrs@0.6.5 r-tmb@1.9.18 r-tibble@3.3.0 r-sparsemvn@0.2.2 r-rvec@1.0.0 r-rcppeigen@0.3.4.0.2 r-poputils@0.4.2 r-matrix@1.7-4 r-lifecycle@1.0.4 r-generics@0.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bayesiandemography.github.io/bage/
Licenses: Expat
Synopsis: Bayesian Estimation and Forecasting of Age-Specific Rates
Description:

Fast Bayesian estimation and forecasting of age-specific rates, probabilities, and means, based on Template Model Builder'.

r-blakerci 1.0-6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BlakerCI
Licenses: GPL 3
Synopsis: Blaker's Binomial and Poisson Confidence Limits
Description:

Fast and accurate calculation of Blaker's binomial and Poisson confidence limits (and some related stuff).

r-bacistool 1.0.0
Dependencies: jags@4.3.1
Propagated dependencies: r-rjags@4-17
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bacistool
Licenses: GPL 3+
Synopsis: Bayesian Classification and Information Sharing (BaCIS) Tool for the Design of Multi-Group Phase II Clinical Trials
Description:

This package provides the design of multi-group phase II clinical trials with binary outcomes using the hierarchical Bayesian classification and information sharing (BaCIS) model. Subgroups are classified into two clusters on the basis of their outcomes mimicking the hypothesis testing framework. Subsequently, information sharing takes place within subgroups in the same cluster, rather than across all subgroups. This method can be applied to the design and analysis of multi-group clinical trials with binary outcomes. Reference: Nan Chen and J. Jack Lee (2019) <doi:10.1002/bimj.201700275>.

r-blmodel 1.0.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BLModel
Licenses: GPL 3
Synopsis: Black-Litterman Posterior Distribution
Description:

Posterior distribution in the Black-Litterman model is computed from a prior distribution given in the form of a time series of asset returns and a continuous distribution of views provided by the user as an external function.

r-barry 0.2.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/USCbiostats/barryr
Licenses: Expat
Synopsis: Your Go-to Motif Accountant
Description:

This package provides the C++ header-only library barry for use in R packages. barry is a C++ template library for counting sufficient statistics on binary arrays and building discrete exponential-family models. It provides tools for sparse arrays, user-defined count statistics, support set constraints, power set generation, and includes modules for Discrete Exponential Family Models (DEFMs) and network statistics. By placing these headers in this package, we offer an efficient distribution system for CRAN as replication of this code in the sources of other packages is avoided. This package follows the same approach as the BH package which provides Boost headers for R packages.

r-baldur 0.0.4
Propagated dependencies: r-viridislite@0.4.2 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rlang@1.1.6 r-rdpack@2.6.4 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-purrr@1.2.0 r-multidplyr@0.1.4 r-magrittr@2.0.4 r-lifecycle@1.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/PhilipBerg/baldur
Licenses: Expat
Synopsis: Bayesian Hierarchical Modeling for Label-Free Proteomics
Description:

Statistical decision in proteomics data using a hierarchical Bayesian model. There are two regression models for describing the mean-variance trend, a gamma regression or a latent gamma mixture regression. The regression model is then used as an Empirical Bayes estimator for the prior on the variance in a peptide. Further, it assumes that each measurement has an uncertainty (increased variance) associated with it that is also inferred. Finally, it tries to estimate the posterior distribution (by Hamiltonian Monte Carlo) for the differences in means for each peptide in the data. Once the posterior is inferred, it integrates the tails to estimate the probability of error from which a statistical decision can be made. See Berg and Popescu for details (<doi:10.1016/j.mcpro.2023.100658>).

r-besthr 0.3.2
Propagated dependencies: r-tibble@3.3.0 r-stringr@1.6.0 r-rlang@1.1.6 r-patchwork@1.3.2 r-magrittr@2.0.4 r-ggridges@0.5.7 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=besthr
Licenses: Expat
Synopsis: Generating Bootstrap Estimation Distributions of HR Data
Description:

This package creates plots showing scored HR experiments and plots of distribution of means of ranks of HR score from bootstrapping. Authors (2019) <doi:10.5281/zenodo.3374507>.

r-biocro 3.3.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/biocro/biocro
Licenses: Expat
Synopsis: Modular Crop Growth Simulations
Description:

This package provides a cross-platform representation of models as sets of equations that facilitates modularity in model building and allows users to harness modern techniques for numerical integration and data visualization. Documentation is provided by several vignettes included in this package; also see Lochocki et al. (2022) <doi:10.1093/insilicoplants/diac003>.

r-bcf 2.0.2
Propagated dependencies: r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrixstats@1.5.0 r-hmisc@5.2-4 r-foreach@1.5.2 r-doparallel@1.0.17 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bcf
Licenses: GPL 3
Synopsis: Causal Inference using Bayesian Causal Forests
Description:

Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-BA1195> for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) <arXiv:1309.1906>.

r-bigergm 1.2.5
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.6.0 r-statnet-common@4.12.0 r-rlang@1.1.6 r-reticulate@1.44.1 r-readr@2.1.6 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-purrr@1.2.0 r-network@1.19.0 r-memoise@2.0.1 r-matrix@1.7-4 r-magrittr@2.0.4 r-intergraph@2.0-4 r-igraph@2.2.1 r-glue@1.8.0 r-foreach@1.5.2 r-ergm-multi@0.3.0 r-ergm@4.10.1 r-dplyr@1.1.4 r-cachem@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bigergm
Licenses: GPL 3
Synopsis: Fit, Simulate, and Diagnose Hierarchical Exponential-Family Models for Big Networks
Description:

This package provides a toolbox for analyzing and simulating large networks based on hierarchical exponential-family random graph models (HERGMs).'bigergm implements the estimation for large networks efficiently building on the lighthergm and hergm packages. Moreover, the package contains tools for simulating networks with local dependence to assess the goodness-of-fit.

r-binsegbstrap 1.0-1
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BinSegBstrap
Licenses: GPL 3
Synopsis: Piecewise Smooth Regression by Bootstrapped Binary Segmentation
Description:

This package provides methods for piecewise smooth regression. A piecewise smooth signal is estimated by applying a bootstrapped test recursively (binary segmentation approach). Each bootstrapped test decides whether the underlying signal is smooth on the currently considered subsegment or contains at least one further change-point.

r-bintools 0.2.0
Propagated dependencies: r-tibble@3.3.0 r-stringi@1.8.7 r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-dplyr@1.1.4 r-combinat@0.0-8 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BINtools
Licenses: GPL 3
Synopsis: Bayesian BIN (Bias, Information, Noise) Model of Forecasting
Description:

This package provides a recently proposed Bayesian BIN model disentangles the underlying processes that enable forecasters and forecasting methods to improve, decomposing forecasting accuracy into three components: bias, partial information, and noise. By describing the differences between two groups of forecasters, the model allows the user to carry out useful inference, such as calculating the posterior probabilities of the treatment reducing bias, diminishing noise, or increasing information. It also provides insight into how much tamping down bias and noise in judgment or enhancing the efficient extraction of valid information from the environment improves forecasting accuracy. This package provides easy access to the BIN model. For further information refer to the paper Ville A. Satopää, Marat Salikhov, Philip E. Tetlock, and Barbara Mellers (2021) "Bias, Information, Noise: The BIN Model of Forecasting" <doi:10.1287/mnsc.2020.3882>.

r-bmggum 0.1.0
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-loo@2.8.0 r-ggum@0.5 r-ggplot2@4.0.1 r-edstan@1.1.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/Naidantu/bmggum
Licenses: GPL 3+
Synopsis: Bayesian Multidimensional Generalized Graded Unfolding Model
Description:

Full Bayesian estimation of Multidimensional Generalized Graded Unfolding Model (MGGUM) using rstan (See Stan Development Team (2020) <https://mc-stan.org/>). Functions are provided for estimation, result extraction, model fit statistics, and plottings.

r-bayesgwqs 0.1.1
Dependencies: jags@4.3.1
Propagated dependencies: r-stringr@1.6.0 r-rjags@4-17 r-plyr@1.8.9 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesGWQS
Licenses: GPL 3
Synopsis: Bayesian Grouped Weighted Quantile Sum Regression
Description:

Fits Bayesian grouped weighted quantile sum (BGWQS) regressions for one or more chemical groups with binary outcomes. Wheeler DC et al. (2019) <doi:10.1016/j.sste.2019.100286>.

r-basad 0.3.0
Propagated dependencies: r-rmutil@1.1.10 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=basad
Licenses: GPL 3+
Synopsis: Bayesian Variable Selection with Shrinking and Diffusing Priors
Description:

This package provides a Bayesian variable selection approach using continuous spike and slab prior distributions. The prior choices here are motivated by the shrinking and diffusing priors studied in Narisetty & He (2014) <DOI:10.1214/14-AOS1207>.

r-belex 0.1.0
Propagated dependencies: r-xml@3.99-0.20
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=belex
Licenses: GPL 3
Synopsis: Download Historical Data from the Belgrade Stock Exchange
Description:

This package provides tools for downloading historical financial data from the www.belex.rs.

r-bisrna 0.2.2
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BisRNA
Licenses: GPL 2+
Synopsis: Analysis of RNA Cytosine-5 Methylation
Description:

Bisulfite-treated RNA non-conversion in a set of samples is analysed as follows : each sample's non-conversion distribution is identified to a Poisson distribution. P-values adjusted for multiple testing are calculated in each sample. Combined non-conversion P-values and standard errors are calculated on the intersection of the set of samples. For further details, see C Legrand, F Tuorto, M Hartmann, R Liebers, D Jakob, M Helm and F Lyko (2017) <doi:10.1101/gr.210666.116>.

r-bis 0.4
Propagated dependencies: r-xml2@1.5.0 r-rvest@1.0.5 r-readr@2.1.6 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/stefanangrick/BIS
Licenses: CC0
Synopsis: Programmatic Access to Bank for International Settlements Data
Description:

This package provides an interface to data provided by the Bank for International Settlements <https://www.bis.org>, allowing for programmatic retrieval of a large quantity of (central) banking data.

r-betaper 1.1-3
Propagated dependencies: r-vegan@2.7-2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=betaper
Licenses: GPL 2+
Synopsis: Taxonomic Uncertainty on Multivariate Analyses of Ecological Data
Description:

Permutational method to incorporate taxonomic uncertainty and some functions to assess its effects on parameters of some widely used multivariate methods in ecology, as explained in Cayuela et al. (2011) <doi:10.1111/j.1600-0587.2009.05899.x>.

r-biomor 0.1.1
Propagated dependencies: r-xgboost@1.7.11.1 r-themis@1.0.3 r-recipes@1.3.1 r-proc@1.19.0.1 r-magrittr@2.0.4 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BioMoR
Licenses: Expat
Synopsis: Bioinformatics Modeling with Recursion and Autoencoder-Based Ensemble
Description:

This package provides tools for bioinformatics modeling using recursive transformer-inspired architectures, autoencoders, random forests, XGBoost, and stacked ensemble models. Includes utilities for cross-validation, calibration, benchmarking, and threshold optimization in predictive modeling workflows. The methodology builds on ensemble learning (Breiman 2001 <doi:10.1023/A:1010933404324>), gradient boosting (Chen and Guestrin 2016 <doi:10.1145/2939672.2939785>), autoencoders (Hinton and Salakhutdinov 2006 <doi:10.1126/science.1127647>), and recursive transformer efficiency approaches such as Mixture-of-Recursions (Bae et al. 2025 <doi:10.48550/arXiv.2507.10524>).

r-bsgw 0.9.4
Propagated dependencies: r-survival@3.8-3 r-mfusampler@1.1.0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BSGW
Licenses: GPL 2+
Synopsis: Bayesian Survival Model with Lasso Shrinkage Using Generalized Weibull Regression
Description:

Bayesian survival model using Weibull regression on both scale and shape parameters. Dependence of shape parameter on covariates permits deviation from proportional-hazard assumption, leading to dynamic - i.e. non-constant with time - hazard ratios between subjects. Bayesian Lasso shrinkage in the form of two Laplace priors - one for scale and one for shape coefficients - allows for many covariates to be included. Cross-validation helper functions can be used to tune the shrinkage parameters. Monte Carlo Markov Chain (MCMC) sampling using a Gibbs wrapper around Radford Neal's univariate slice sampler (R package MfUSampler) is used for coefficient estimation.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208