Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to identify plausible and replicable factor structures for a set of variables via k-fold cross validation. The process combines the exploratory and confirmatory factor analytic approach to scale development (Flora & Flake, 2017) <doi:10.1037/cbs0000069> with a cross validation technique that maximizes the available data (Hastie, Tibshirani, & Friedman, 2009) <isbn:978-0-387-21606-5>. Also available are functions to determine k by drawing on power analytic techniques for covariance structures (MacCallum, Browne, & Sugawara, 1996) <doi:10.1037/1082-989X.1.2.130>, generate model syntax, and summarize results in a report.
This package provides the ability to create dynamic citations in which the bibliographic information is pulled from the web rather than having to be entered into a local database such as bibtex ahead of time. The package is primarily aimed at authoring in the R markdown format, and can provide outputs for web-based authoring such as linked text for inline citations. Cite using a DOI', URL, or bibtex file key. See the package URL for details.
Statistical methods that quantify the conditions necessary to alter inferences, also known as sensitivity analysis, are becoming increasingly important to a variety of quantitative sciences. A series of recent works, including Frank (2000) <doi:10.1177/0049124100029002001> and Frank et al. (2013) <doi:10.3102/0162373713493129> extend previous sensitivity analyses by considering the characteristics of omitted variables or unobserved cases that would change an inference if such variables or cases were observed. These analyses generate statements such as "an omitted variable would have to be correlated at xx with the predictor of interest (e.g., the treatment) and outcome to invalidate an inference of a treatment effect". Or "one would have to replace pp percent of the observed data with nor which the treatment had no effect to invalidate the inference". We implement these recent developments of sensitivity analysis and provide modules to calculate these two robustness indices and generate such statements in R. In particular, the functions konfound(), pkonfound() and mkonfound() allow users to calculate the robustness of inferences for a user's own model, a single published study and multiple studies respectively.
Demo and dataset accompaying the books : De l'analyse des réseaux expérimentaux à la méta-analyse: Méthodes et applications avec le logiciel R pour les sciences agronomiques et environnementales (Published 2018-06-28, Quae, for french version) by David Makowski, Francois Piraux and Francois Brun - <https://www.quae.com/produit/1514/9782759228164/de-l-analyse-des-reseaux-experimentaux-a-la-meta-analyse> Knowledge Synthesis in Agriculture : from Experimental Network to Meta-Analysis (in preparation for 2018-06, Springer , for English version) by David Makowski, Francois Piraux and Francois Brun A full description of all the material is in both books. ACKNOWLEDGMENTS : The French network "RMT modeling and data analysis for agriculture" (<http://www.modelia.org>) have contributed to the development of this R package. This project and network are lead by ACTA (French Technical Institute for Agriculture) and was funded by a grant from the Ministry of Agriculture and Fishing of France.
This is designed for use with an arbitrary set of equations with an arbitrary set of unknowns. The user selects "fixed" values for enough unknowns to leave as many variables as there are equations, which in most cases means the system is properly defined and a unique solution exists. The function, the fixed values and initial values for the remaining unknowns are fed to a nonlinear backsolver. The original version of "TK!Solver" , now a product of Universal Technical Systems (<https://www.uts.com>) was the inspiration for this function.
This package provides functions to implement K Nearest Neighbor forecasting using a weighted similarity metric tailored to the problem of forecasting univariate time series where recent observations, seasonal patterns, and exogenous predictors are all relevant in predicting future observations of the series in question. For more information on the formulation of this similarity metric please see Trupiano (2021) <arXiv:2112.06266>.
It uses species accumulation curves and diverse estimators to assess, at the same time, the levels of survey coverage in multiple geographic cells of a size defined by the user or polygons. It also enables the geographical depiction of observed species richness, survey effort and completeness values including a background with administrative areas.
This package provides functions to search, retrieve, apply and update classification standards and code lists using Statistics Norway's API <https://www.ssb.no/klass> from the system KLASS'. Retrieves classifications by date with options to choose language, hierarchical level and formatting.
This package contains functions to compute p-values for the one-sample and two-sample Kolmogorov-Smirnov (KS) tests and the two-sample Kuiper test for any fixed critical level and arbitrary (possibly very large) sample sizes. For the one-sample KS test, this package implements a novel, accurate and efficient method named Exact-KS-FFT, which allows the pre-specified cumulative distribution function under the null hypothesis to be continuous, purely discrete or mixed. In the two-sample case, it is assumed that both samples come from an unspecified (unknown) continuous, purely discrete or mixed distribution, i.e. ties (repeated observations) are allowed, and exact p-values of the KS and the Kuiper tests are computed. Note, the two-sample Kuiper test is often used when data samples are on the line or on the circle (circular data). To cite this package in publication: (for the use of the one-sample KS test) Dimitrina S. Dimitrova, Vladimir K. Kaishev, and Senren Tan. Computing the Kolmogorov-Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software. 2020; 95(10): 1--42. <doi:10.18637/jss.v095.i10>. (for the use of the two-sample KS and Kuiper tests) Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2024). The R functions KS2sample and Kuiper2sample: Efficient Exact Calculation of P-values of the Two-sample Kolmogorov-Smirnov and Kuiper Tests. submitted.
This package implements estimation procedures for Autoregressive Distributed Lag (ARDL) and Nonlinear ARDL (NARDL) models, which allow researchers to investigate both short- and long-run relationships in time series data under mixed orders of integration. The package supports simultaneous modeling of symmetric and asymmetric regressors, flexible treatment of short-run and long-run asymmetries, and automated equation handling. It includes several cointegration testing approaches such as the Pesaran-Shin-Smith F and t bounds tests, the Banerjee error correction test, and the restricted ECM test, together with diagnostic tools including Wald tests for asymmetry, ARCH tests, and stability procedures (CUSUM and CUSUMQ). Methodological foundations are provided in Pesaran, Shin, and Smith (2001) <doi:10.1016/S0304-4076(01)00049-5> and Shin, Yu, and Greenwood-Nimmo (2014, ISBN:9780123855079).
Computes measures of multivariate kurtosis, matrices of fourth-order moments and cumulants, kurtosis-based projection pursuit. Franceschini, C. and Loperfido, N. (2018, ISBN:978-3-319-73905-2). "An Algorithm for Finding Projections with Extreme Kurtosis". Loperfido, N. (2017,ISSN:0024-3795). "A New Kurtosis Matrix, with Statistical Applications".
This package provides a fast and computationally efficient algorithm designed to enable researchers to efficiently and quickly extract semantically-related keywords using a fitted embedding model. For more details about the methods applied, see Chester (2025). <doi:10.17605/OSF.IO/5B7RQ>.
Structural T1 magnetic resonance imaging ('MRI') data from the Kirby21 reproducibility study <doi:10.1016/j.neuroimage.2010.11.047>.
Sequences encoding by using the chaos game representation. Löchel et al. (2019) <doi:10.1093/bioinformatics/btz493>.
Computes the Kantorovich distance between two probability measures on a finite set. The Kantorovich distance is also known as the Monge-Kantorovich distance or the first Wasserstein distance.
Package implements Kernel-based Regularized Least Squares (KRLS), a machine learning method to fit multidimensional functions y=f(x) for regression and classification problems without relying on linearity or additivity assumptions. KRLS finds the best fitting function by minimizing the squared loss of a Tikhonov regularization problem, using Gaussian kernels as radial basis functions. For further details see Hainmueller and Hazlett (2014).
Extends the simple k-nearest neighbors algorithm by incorporating numerous kernel functions and a variety of distance metrics. The package takes advantage of RcppArmadillo to speed up the calculation of distances between observations.
This package provides tools for keeping track of information, named "keys", about rows of data frame like objects. This is done by creating special attribute "keys" which is updated after every change in rows (subsetting, ordering, etc.). This package is designed to work tightly with dplyr package.
This package implements the kernel method of test equating as defined in von Davier, A. A., Holland, P. W. and Thayer, D. T. (2004) <doi:10.1007/b97446> and Andersson, B. and Wiberg, M. (2017) <doi:10.1007/s11336-016-9528-7> using the CB, EG, SG, NEAT CE/PSE and NEC designs, supporting Gaussian, logistic and uniform kernels and unsmoothed and pre-smoothed input data.
Convert keys and other values to memorable phrases. Includes some methods to build lists of words.
The kernelized version of principal component analysis (KPCA) has proven to be a valid nonlinear alternative for tackling the nonlinearity of biological sample spaces. However, it poses new challenges in terms of the interpretability of the original variables. kpcaIG aims to provide a tool to select the most relevant variables based on the kernel PCA representation of the data as in Briscik et al. (2023) <doi:10.1186/s12859-023-05404-y>. It also includes functions for 2D and 3D visualization of the original variables (as arrows) into the kernel principal components axes, highlighting the contribution of the most important ones.
API Wrapper to use Korea Investment & Securities (KIS) trading system that provides various financial services like stock price check, orders and balance check <https://apiportal.koreainvestment.com/>.
This package provides a variable selection procedure, dubbed KKO, for nonparametric additive model with finite-sample false discovery rate control guarantee. The method integrates three key components: knockoffs, subsampling for stability, and random feature mapping for nonparametric function approximation. For more information, see the accompanying paper: Dai, X., Lyu, X., & Li, L. (2021). â Kernel Knockoffs Selection for Nonparametric Additive Modelsâ . arXiv preprint <arXiv:2105.11659>.
Implementation of Discrete Symmetric Optimal Kernel for estimating count data distributions, as described by T. Senga Kiessé and G. Durrieu (2024) <doi:10.1016/j.spl.2024.110078>.The nonparametric estimator using the discrete symmetric optimal kernel was illustrated on simulated data sets and a real-word data set included in the package, in comparison with two other discrete symmetric kernels.