_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-kaigiroku 0.5
Propagated dependencies: r-tidyr@1.3.1 r-r-utils@2.13.0 r-jsonlite@2.0.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/amatsuo/kaigiroku
Licenses: GPL 3
Build system: r
Synopsis: Programmatic Access to the API for Japanese Diet Proceedings
Description:

Search and download data from the API for Japanese Diet Proceedings (see the reference at <https://kokkai.ndl.go.jp/api.html>).

r-kpeaks 1.1.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kpeaks
Licenses: GPL 2+
Build system: r
Synopsis: Determination of K Using Peak Counts of Features for Clustering
Description:

The number of clusters (k) is needed to start all the partitioning clustering algorithms. An optimal value of this input argument is widely determined by using some internal validity indices. Since most of the existing internal indices suggest a k value which is computed from the clustering results after several runs of a clustering algorithm they are computationally expensive. On the contrary, the package kpeaks enables to estimate k before running any clustering algorithm. It is based on a simple novel technique using the descriptive statistics of peak counts of the features in a data set.

r-kgode 1.0.5
Propagated dependencies: r-r6@2.6.1 r-pspline@1.0-21 r-pracma@2.4.6 r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=KGode
Licenses: GPL 2+
Build system: r
Synopsis: Kernel Based Gradient Matching for Parameter Inference in Ordinary Differential Equations
Description:

The kernel ridge regression and the gradient matching algorithm proposed in Niu et al. (2016) <https://proceedings.mlr.press/v48/niu16.html> and the warping algorithm proposed in Niu et al. (2017) <DOI:10.1007/s00180-017-0753-z> are implemented for parameter inference in differential equations. Four schemes are provided for improving parameter estimation in odes by using the odes regularisation and warping.

r-kris 1.1.6
Propagated dependencies: r-rarpack@0.11-0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://gitlab.com/kris.ccp/kris
Licenses: Expat
Build system: r
Synopsis: Keen and Reliable Interface Subroutines for Bioinformatic Analysis
Description:

This package provides useful functions which are needed for bioinformatic analysis such as calculating linear principal components from numeric data and Single-nucleotide polymorphism (SNP) dataset, calculating fixation index (Fst) using Hudson method, creating scatter plots in 3 views, handling with PLINK binary file format, detecting rough structures and outliers using unsupervised clustering, and calculating matrix multiplication in the faster way for big data.

r-kcsknnshiny 0.1.0
Propagated dependencies: r-shiny@1.11.1 r-rhandsontable@0.3.8 r-fnn@1.1.4.1 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=KCSKNNShiny
Licenses: GPL 2
Build system: r
Synopsis: K-Nearest Neighbour Classifier
Description:

It predicts any attribute (categorical) given a set of input numeric predictor values. Note that only numeric input predictors should be given. The k value can be chosen according to accuracies provided. The attribute to be predicted can be selected from the dropdown provided (select categorical attribute). This is because categorical attributes cannot be given as inputs here. A handsontable is also provided to enter the input predictor values.

r-kinmixlite 2.2.1
Propagated dependencies: r-statnet-common@4.12.0 r-rsolnp@2.0.1 r-ribd@1.7.1 r-pedtools@2.10.0 r-numderiv@2016.8-1.1 r-matrix@1.7-4 r-grbase@2.0.3 r-graven@1.1.10 r-dnamixtureslite@0.0-1
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://petergreen5678.github.io/research/software/kinmix.html
Licenses: GPL 2+
Build system: r
Synopsis: Inference About Relationships from DNA Mixtures
Description:

This package provides methods for inference about/under complex relationships using peak height data from DNA mixtures: the most basic example would be testing whether a contributor to a mixture is the father of a child of known genotype. This provides most of the functionality of the KinMix package, but with some loss of efficiency and restriction on problem size, as the latter uses RHugin as the Bayes net engine, while this package uses gRain'. The package implements the methods introduced in Green, P. J. and Mortera, J. (2017) <doi:10.1016/j.fsigen.2017.02.001> and Green, P. J. and Mortera, J. (2021) <doi:10.1111/rssc.12498>.

r-kinship2 1.9.6.2
Propagated dependencies: r-quadprog@1.5-8 r-matrix@1.7-4 r-knitr@1.50
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kinship2
Licenses: GPL 2+
Build system: r
Synopsis: Pedigree Functions
Description:

Routines to handle family data with a pedigree object. The initial purpose was to create correlation structures that describe family relationships such as kinship and identity-by-descent, which can be used to model family data in mixed effects models, such as in the coxme function. Also includes a tool for pedigree drawing which is focused on producing compact layouts without intervention. Recent additions include utilities to trim the pedigree object with various criteria, and kinship for the X chromosome.

r-kequate 1.6.4
Propagated dependencies: r-mirt@1.45.1 r-ltm@1.2-0 r-equateirt@2.5.2
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kequate
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: The Kernel Method of Test Equating
Description:

This package implements the kernel method of test equating as defined in von Davier, A. A., Holland, P. W. and Thayer, D. T. (2004) <doi:10.1007/b97446> and Andersson, B. and Wiberg, M. (2017) <doi:10.1007/s11336-016-9528-7> using the CB, EG, SG, NEAT CE/PSE and NEC designs, supporting Gaussian, logistic and uniform kernels and unsmoothed and pre-smoothed input data.

r-kifidi 0.1.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=Kifidi
Licenses: GPL 3
Build system: r
Synopsis: Summary Table and Means Plots
Description:

Optimized for handling complex datasets in environmental and ecological research, this package offers functionality that is not fully met by general-purpose packages. It provides two key functions, summarize_data()', which summarizes datasets, and plot_means()', which creates plots with error bars. The plot_means() function incorporates error bars by default, allowing quick visualization of uncertainties, crucial in ecological studies. It also streamlines workflows for grouped datasets (e.g., by species or treatment), making it particularly user-friendly and reducing the complexity and time required for data summarization and visualization.

r-kfpca 2.0
Propagated dependencies: r-pracma@2.4.6 r-kader@0.0.8 r-fdapace@0.6.0 r-fda@6.3.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=KFPCA
Licenses: GPL 3+
Build system: r
Synopsis: Kendall Functional Principal Component Analysis
Description:

Implementation for Kendall functional principal component analysis. Kendall functional principal component analysis is a robust functional principal component analysis technique for non-Gaussian functional/longitudinal data. The crucial function of this package is KFPCA() and KFPCA_reg(). Moreover, least square estimates of functional principal component scores are also provided. Refer to Rou Zhong, Shishi Liu, Haocheng Li, Jingxiao Zhang. (2021) <arXiv:2102.01286>. Rou Zhong, Shishi Liu, Haocheng Li, Jingxiao Zhang. (2021) <doi:10.1016/j.jmva.2021.104864>.

r-kerseg 1.1
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kerSeg
Licenses: GPL 2+
Build system: r
Synopsis: New Kernel-Based Change-Point Detection
Description:

New kernel-based test and fast tests for detecting change-points or changed-intervals where the distributions abruptly change. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2022) <arXiv:2206.01853>.

r-kmedians 2.2.0
Propagated dependencies: r-reshape2@1.4.5 r-mvtnorm@1.3-3 r-gmedian@1.2.7 r-ggplot2@4.0.1 r-genieclust@1.2.0 r-foreach@1.5.2 r-doparallel@1.0.17 r-capushe@1.1.3
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=Kmedians
Licenses: GPL 2+
Build system: r
Synopsis: K-Medians
Description:

Online, Semi-online, and Offline K-medians algorithms are given. For both methods, the algorithms can be initialized randomly or with the help of a robust hierarchical clustering. The number of clusters can be selected with the help of a penalized criterion. We provide functions to provide robust clustering. Function gen_K() enables to generate a sample of data following a contaminated Gaussian mixture. Functions Kmedians() and Kmeans() consists in a K-median and a K-means algorithms while Kplot() enables to produce graph for both methods. Cardot, H., Cenac, P. and Zitt, P-A. (2013). "Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm". Bernoulli, 19, 18-43. <doi:10.3150/11-BEJ390>. Cardot, H. and Godichon-Baggioni, A. (2017). "Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis". Test, 26(3), 461-480 <doi:10.1007/s11749-016-0519-x>. Godichon-Baggioni, A. and Surendran, S. "A penalized criterion for selecting the number of clusters for K-medians" <arXiv:2209.03597> Vardi, Y. and Zhang, C.-H. (2000). "The multivariate L1-median and associated data depth". Proc. Natl. Acad. Sci. USA, 97(4):1423-1426. <doi:10.1073/pnas.97.4.1423>.

r-kmc 0.4-2
Propagated dependencies: r-rootsolve@1.8.2.4 r-rcpp@1.1.0 r-emplik@1.3-2
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/yfyang86/kmc/
Licenses: LGPL 3
Build system: r
Synopsis: Kaplan-Meier Estimator with Constraints for Right Censored Data -- a Recursive Computational Algorithm
Description:

Given constraints for right censored data, we use a recursive computational algorithm to calculate the the "constrained" Kaplan-Meier estimator. The constraint is assumed given in linear estimating equations or mean functions. We also illustrate how this leads to the empirical likelihood ratio test with right censored data and accelerated failure time model with given coefficients. EM algorithm from emplik package is used to get the initial value. The properties and performance of the EM algorithm is discussed in Mai Zhou and Yifan Yang (2015)<doi: 10.1007/s00180-015-0567-9> and Mai Zhou and Yifan Yang (2017) <doi: 10.1002/wics.1400>. More applications could be found in Mai Zhou (2015) <doi: 10.1201/b18598>.

r-kpiwidget 0.1.1
Propagated dependencies: r-htmlwidgets@1.6.4 r-crosstalk@1.2.2
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://arnold-kakas.github.io/kpiwidget/
Licenses: Expat
Build system: r
Synopsis: KPI Widgets for Quarto Dashboards with Crosstalk
Description:

This package provides an easy way to create interactive KPI (key performance indicator) widgets for Quarto dashboards using Crosstalk'. The package enables visualization of key metrics in a structured format, supporting interactive filtering and linking with other Crosstalk'-enabled components. Designed for use in Quarto Dashboards.

r-kgschart 1.3.5
Propagated dependencies: r-stringr@1.6.0 r-shiny@1.11.1 r-png@0.1-8 r-nnet@7.3-20 r-matrixstats@1.5.0 r-magrittr@2.0.4 r-gridextra@2.3 r-ggplot2@4.0.1 r-deepnet@0.2.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/kota7/kgschart
Licenses: Expat
Build system: r
Synopsis: KGS Rank Graph Parser
Description:

Restore underlining numeric data from rating history graph of KGS (an online platform of the game of go, <http://www.gokgs.com/>). A shiny application is also provided.

r-kfpls 1.0
Propagated dependencies: r-fda@6.3.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=KFPLS
Licenses: GPL 3+
Build system: r
Synopsis: Kernel Functional Partial Least Squares
Description:

Implementation for kernel functional partial least squares (KFPLS) method. KFPLS method is developed for functional nonlinear models, and the method does not require strict constraints for the nonlinear structures. The crucial function of this package is KFPLS().

r-kldest 1.0.0
Propagated dependencies: r-rann@2.6.2
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://niklhart.github.io/kldest/
Licenses: Expat
Build system: r
Synopsis: Sample-Based Estimation of Kullback-Leibler Divergence
Description:

Estimation algorithms for Kullback-Leibler divergence between two probability distributions, based on one or two samples, and including uncertainty quantification. Distributions can be uni- or multivariate and continuous, discrete or mixed.

r-knnwtsim 1.0.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/mtrupiano1/knnwtsim
Licenses: GPL 3+
Build system: r
Synopsis: K Nearest Neighbor Forecasting with a Tailored Similarity Metric
Description:

This package provides functions to implement K Nearest Neighbor forecasting using a weighted similarity metric tailored to the problem of forecasting univariate time series where recent observations, seasonal patterns, and exogenous predictors are all relevant in predicting future observations of the series in question. For more information on the formulation of this similarity metric please see Trupiano (2021) <arXiv:2112.06266>.

r-keys 0.1.1
Propagated dependencies: r-shiny@1.11.1 r-jsonlite@2.0.0 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/r4fun/keys
Licenses: FSDG-compatible
Build system: r
Synopsis: Keyboard Shortcuts for 'shiny'
Description:

Assign and listen to keyboard shortcuts in shiny using the Mousetrap Javascript library.

r-knnmi 1.0
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=knnmi
Licenses: GPL 3+
Build system: r
Synopsis: k-Nearest Neighbor Mutual Information Estimator
Description:

This is a C++ mutual information (MI) library based on the k-nearest neighbor (KNN) algorithm. There are three functions provided for computing MI for continuous values, mixed continuous and discrete values, and conditional MI for continuous values. They are based on algorithms by A. Kraskov, et. al. (2004) <doi:10.1103/PhysRevE.69.066138>, BC Ross (2014)<doi:10.1371/journal.pone.0087357>, and A. Tsimpiris (2012) <doi:10.1016/j.eswa.2012.05.014>, respectively.

r-keyclust 1.2.5
Propagated dependencies: r-textstem@0.1.4 r-rcpp@1.1.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=keyclust
Licenses: GPL 3
Build system: r
Synopsis: Model for Semi-Supervised Keyword Extraction from Word Embedding Models
Description:

This package provides a fast and computationally efficient algorithm designed to enable researchers to efficiently and quickly extract semantically-related keywords using a fitted embedding model. For more details about the methods applied, see Chester (2025). <doi:10.17605/OSF.IO/5B7RQ>.

r-kamila 0.1.2
Propagated dependencies: r-rcpp@1.1.0 r-plyr@1.8.9 r-kernsmooth@2.23-26 r-gtools@3.9.5 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/ahfoss/kamila
Licenses: GPL 3 FSDG-compatible
Build system: r
Synopsis: Methods for Clustering Mixed-Type Data
Description:

This package implements methods for clustering mixed-type data, specifically combinations of continuous and nominal data. Special attention is paid to the often-overlooked problem of equitably balancing the contribution of the continuous and categorical variables. This package implements KAMILA clustering, a novel method for clustering mixed-type data in the spirit of k-means clustering. It does not require dummy coding of variables, and is efficient enough to scale to rather large data sets. Also implemented is Modha-Spangler clustering, which uses a brute-force strategy to maximize the cluster separation simultaneously in the continuous and categorical variables. For more information, see Foss, Markatou, Ray, & Heching (2016) <doi:10.1007/s10994-016-5575-7> and Foss & Markatou (2018) <doi:10.18637/jss.v083.i13>.

r-kernhaz 0.1.0
Propagated dependencies: r-rgl@1.3.31 r-ga@3.2.4 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kernhaz
Licenses: GPL 2+
Build system: r
Synopsis: Kernel Estimation of Hazard Function in Survival Analysis
Description:

Producing kernel estimates of the unconditional and conditional hazard function for right-censored data including methods of bandwidth selection.

r-kdist 0.2
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kdist
Licenses: GPL 3
Build system: r
Synopsis: K-Distribution and Weibull Paper
Description:

Density, distribution function, quantile function and random generation for the K-distribution. A plotting function that plots data on Weibull paper and another function to draw additional lines. See results from package in T Lamont-Smith (2018), submitted J. R. Stat. Soc.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283