Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Attempts to remove vocals from a stereo .wav recording of a song.
An implementation of a simple and highly optimized ordinary kriging algorithm to plot geographical data.
This package provides tools to calculate the theoretical hydrodynamic response of an aquifer undergoing harmonic straining or pressurization, or analyze measured responses. There are two classes of models here, designed for use with confined aquifers: (1) for sealed wells, based on the model of Kitagawa et al (2011, <doi:10.1029/2010JB007794>), and (2) for open wells, based on the models of Cooper et al (1965, <doi:10.1029/JZ070i016p03915>), Hsieh et al (1987, <doi:10.1029/WR023i010p01824>), Rojstaczer (1988, <doi:10.1029/JB093iB11p13619>), Liu et al (1989, <doi:10.1029/JB094iB07p09453>), and Wang et al (2018, <doi:10.1029/2018WR022793>). Wang's solution is a special exception which allows for leakage out of the aquifer (semi-confined); it is equivalent to Hsieh's model when there is no leakage (the confined case). These models treat strain (or aquifer head) as an input to the physical system, and fluid-pressure (or water height) as the output. The applicable frequency band of these models is characteristic of seismic waves, atmospheric pressure fluctuations, and solid earth tides.
This package provides a toolkit for absolute and relative dating and analysis of chronological patterns. This package includes functions for chronological modeling and dating of archaeological assemblages from count data. It provides methods for matrix seriation. It also allows to compute time point estimates and density estimates of the occupation and duration of an archaeological site.
Given constraints for right censored data, we use a recursive computational algorithm to calculate the the "constrained" Kaplan-Meier estimator. The constraint is assumed given in linear estimating equations or mean functions. We also illustrate how this leads to the empirical likelihood ratio test with right censored data and accelerated failure time model with given coefficients. EM algorithm from emplik package is used to get the initial value. The properties and performance of the EM algorithm is discussed in Mai Zhou and Yifan Yang (2015)<doi: 10.1007/s00180-015-0567-9> and Mai Zhou and Yifan Yang (2017) <doi: 10.1002/wics.1400>. More applications could be found in Mai Zhou (2015) <doi: 10.1201/b18598>.
Evaluate specific panels in different aspects: i) Simulation tools related to pedigree researches; ii) calculation for systemic effectiveness indicators, such as probability of exclusion (PE).
An efficient algorithm inspired by majorization-minimization principle for solving the entire solution path of a flexible nonparametric expectile regression estimator constructed in a reproducing kernel Hilbert space.
The K-sample omnibus non-proportional hazards (KONP) tests are powerful non-parametric tests for comparing K (>=2) hazard functions based on right-censored data (Gorfine, Schlesinger and Hsu, 2020, <doi:10.1177/0962280220907355>). These tests are consistent against any differences between the hazard functions of the groups. The KONP tests are often more powerful than other existing tests, especially under non-proportional hazard functions.
Analysis of kin-cohort studies. kin.cohort provides estimates of age-specific cumulative risk of a disease for carriers and noncarriers of a mutation. The cohorts are retrospectively built from relatives of probands for whom the genotype is known. Currently the method of moments and marginal maximum likelihood are implemented. Confidence intervals are calculated from bootstrap samples. Most of the code is a translation from previous MATLAB code by N. Chatterjee.
Kernel Learning Integrative Clustering (KLIC) is an algorithm that allows to combine multiple kernels, each representing a different measure of the similarity between a set of observations. The contribution of each kernel on the final clustering is weighted according to the amount of information carried by it. As well as providing the functions required to perform the kernel-based clustering, this package also allows the user to simply give the data as input: the kernels are then built using consensus clustering. Different strategies to choose the best number of clusters are also available. For further details please see Cabassi and Kirk (2020) <doi:10.1093/bioinformatics/btaa593>.
In self-reported or anonymised data the user often encounters heaped data, i.e. data which are rounded (to a possibly different degree of coarseness). While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Varying rounding probabilities (depending on the true value) and asymmetric rounding is estimable as well: Gross, M. and Rendtel, U. (2016) (<doi:10.1093/jssam/smw011>). Additionally, bivariate non-parametric density estimation for rounded data, Gross, M. et al. (2016) (<doi:10.1111/rssa.12179>), as well as data aggregated on areas is supported.
The King's Health Questionnaire (KHQ) is a disease-specific, self-administered questionnaire designed specific to assess the impact of Urinary Incontinence (UI) on Quality of Life. The questionnaire was developed by Kelleher and collaborators (1997) <doi:10.1111/j.1471-0528.1997.tb11006.x>. It is a simple, acceptable and reliable measure to use in the clinical setting and a research tool that is useful in evaluating UI treatment outcomes. The KHQ five dimensions (KHQ5D) is a condition-specific preference-based measure developed by Brazier and collaborators (2008) <doi:10.1177/0272989X07301820>. Although not as popular as the SF6D <doi:10.1016/S0895-4356(98)00103-6> and EQ-5D <https://euroqol.org/>, the KHQ5D measures health-related quality of life (HRQoL) specifically for UI, not general conditions like the others two instruments mentioned. The KHQ5D ca be used in the clinical and economic evaluation of health care. The subject self-rates their health in terms of five dimensions: Role Limitation (RL), Physical Limitations (PL), Social Limitations (SL), Emotions (E), and Sleep (S). Frequently the states on these five dimensions are converted to a single utility index using country specific value sets, which can be used in the clinical and economic evaluation of health care as well as in population health surveys. This package provides methods to calculate scores for each dimension of the KHQ; converts KHQ item scores to KHQ5D scores; and also calculates the utility index of the KHQ5D.
This package provides a variable selection procedure, dubbed KKO, for nonparametric additive model with finite-sample false discovery rate control guarantee. The method integrates three key components: knockoffs, subsampling for stability, and random feature mapping for nonparametric function approximation. For more information, see the accompanying paper: Dai, X., Lyu, X., & Li, L. (2021). â Kernel Knockoffs Selection for Nonparametric Additive Modelsâ . arXiv preprint <arXiv:2105.11659>.
Knowledge graphs enable to efficiently visualize and gain insights into large-scale data analysis results, as p-values from multiple studies or embedding data matrices. The usual workflow is a user providing a data frame of association studies results and specifying target nodes, e.g. phenotypes, to visualize. The knowledge graph then shows all the features which are significantly associated with the phenotype, with the edges being proportional to the association scores. As the user adds several target nodes and grouping information about the nodes such as biological pathways, the construction of such graphs soon becomes complex. The kgraph package aims to enable users to easily build such knowledge graphs, and provides two main features: first, to enable building a knowledge graph based on a data frame of concepts relationships, be it p-values or cosine similarities; second, to enable determining an appropriate cut-off on cosine similarities from a complete embedding matrix, to enable the building of a knowledge graph directly from an embedding matrix. The kgraph package provides several display, layout and cut-off options, and has already proven useful to researchers to enable them to visualize large sets of p-value associations with various phenotypes, and to quickly be able to visualize embedding results. Two example datasets are provided to demonstrate these behaviors, and several live shiny applications are hosted by the CELEHS laboratory and Parse Health, as the KESER Mental Health application <https://keser-mental-health.parse-health.org/> based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.
New kernel-based test and fast tests for testing whether two samples are from the same distribution. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2023) <arXiv:2011.06127>.
This package provides data for Kaya identity variables (population, gross domestic product, primary energy consumption, and energy-related CO2 emissions) for the world and for individual nations, and utility functions for looking up data, plotting trends of Kaya variables, and plotting the fuel mix for a given country or region. The Kaya identity (Yoichi Kaya and Keiichi Yokobori, "Environment, Energy, and Economy: Strategies for Sustainability" (United Nations University Press, 1998) and <https://en.wikipedia.org/wiki/Kaya_identity>) expresses a nation's or region's greenhouse gas emissions in terms of its population, per-capita Gross Domestic Product, the energy intensity of its economy, and the carbon-intensity of its energy supply.
It predicts any attribute (categorical) given a set of input numeric predictor values. Note that only numeric input predictors should be given. The k value can be chosen according to accuracies provided. The attribute to be predicted can be selected from the dropdown provided (select categorical attribute). This is because categorical attributes cannot be given as inputs here. A handsontable is also provided to enter the input predictor values.
Computes group centrality scores and identifies the most central group of players in a network.
Offers a graphical user interface for the evaluation of inter-rater agreement with Cohen's and Fleiss Kappa. The calculation of kappa statistics is done using the R package irr', so that KappaGUI is essentially a Shiny front-end for irr'.
Analysis of DNA copy number in single cells using custom genome-wide targeted DNA sequencing panels for the Mission Bio Tapestri platform. Users can easily parse, manipulate, and visualize datasets produced from the automated Tapestri Pipeline', with support for normalization, clustering, and copy number calling. Functions are also available to deconvolute multiplexed samples by genotype and parsing barcoded reads from exogenous lentiviral constructs.
We developed a package Keyboard for designing single-agent, drug-combination, or phase I/II dose-finding clinical trials. The Keyboard designs are novel early phase trial designs that can be implemented simply and transparently, similar to the 3+3 design, but yield excellent performance, comparable to those of more-complicated, model-based designs (Yan F, Mandrekar SJ, Yuan Y (2017) <doi:10.1158/1078-0432.CCR-17-0220>, Li DH, Whitmore JB, Guo W, Ji Y. (2017) <doi:10.1158/1078-0432.CCR-16-1125>, Liu S, Johnson VE (2016) <doi:10.1093/biostatistics/kxv040>, Zhou Y, Lee JJ, Yuan Y (2019) <doi:10.1002/sim.8475>, Pan H, Lin R, Yuan Y (2020) <doi:10.1016/j.cct.2020.105972>). The Keyboard package provides tools for designing, conducting, and analyzing single-agent, drug-combination, and phase I/II dose-finding clinical trials. For more details about how to use this packge, please refer to Li C, Sun H, Cheng C, Tang L, and Pan H. (2022) "A software tool for both the maximum tolerated dose and the optimal biological dose finding trials in early phase designs". Manuscript submitted for publication.
Density, distribution function, quantile function and random generation for the K-distribution. A plotting function that plots data on Weibull paper and another function to draw additional lines. See results from package in T Lamont-Smith (2018), submitted J. R. Stat. Soc.
Quality of life functions for interactive programming. Shortcuts for common combinations of functions or different default arguments. Not to be used in production level scripts, but useful for exploring and quickly manipulating data for easy analysis. Also imports a variety of packages to facilitate the installation of those imported packages on the host machine.
This package provides functions for simulating and estimating kinship-related dispersal. Based on the methods described in M. Jasper, T.L. Schmidt., N.W. Ahmad, S.P. Sinkins & A.A. Hoffmann (2019) <doi:10.1111/1755-0998.13043> "A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito". Assumes an additive variance model of dispersal in two dimensions, compatible with Wright's neighbourhood area. Simple and composite dispersal simulations are supplied, as well as the functions needed to estimate parent-offspring dispersal for simulated or empirical data, and to undertake sampling design for future field studies of dispersal. For ease of use an integrated Shiny app is also included.