Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Smoothing techniques and computing bandwidth selectors of the nth derivative of a probability density for one-dimensional data (described in Arsalane Chouaib Guidoum (2020) <arXiv:2012.06102> [stat.CO]).
This package provides a shiny application for forensic kinship testing, based on the pedsuite R packages. KLINK is closely aligned with the (non-R) software Familias and FamLink', but offers several unique features, including visualisations and automated report generation. The calculation of likelihood ratios supports pairs of linked markers, and all common mutation models.
Application of a Known Biomass Production Model (KBPM): (1) the fitting of KBPM to each stock; (2) the estimation of the effects of environmental variability; (3) the retrospective analysis to identify regime shifts; (4) the estimation of forecasts. For more details see Schaefer (1954) <https://www.iattc.org/GetAttachment/62d510ee-13d0-40f2-847b-0fde415476b8/Vol-1-No-2-1954-SCHAEFER,-MILNER-B-_Some-aspects-of-the-dynamics-of-populations-important-to-the-management-of-the-commercial-marine-fisheries.pdf>, Pella and Tomlinson (1969) <https://www.iattc.org/GetAttachment/9865079c-6ee7-40e2-9e30-c4523ff81ddf/Vol-13-No-3-1969-PELLA,-JEROME-J-,-and-PATRICK-K-TOMLINSON_A-generalized-stock-production-model.pdf> and MacCall (2002) <doi:10.1577/1548-8675(2002)022%3C0272:UOKBPM%3E2.0.CO;2>.
This package provides data for Kaya identity variables (population, gross domestic product, primary energy consumption, and energy-related CO2 emissions) for the world and for individual nations, and utility functions for looking up data, plotting trends of Kaya variables, and plotting the fuel mix for a given country or region. The Kaya identity (Yoichi Kaya and Keiichi Yokobori, "Environment, Energy, and Economy: Strategies for Sustainability" (United Nations University Press, 1998) and <https://en.wikipedia.org/wiki/Kaya_identity>) expresses a nation's or region's greenhouse gas emissions in terms of its population, per-capita Gross Domestic Product, the energy intensity of its economy, and the carbon-intensity of its energy supply.
Offers a graphical user interface for the evaluation of inter-rater agreement with Cohen's and Fleiss Kappa. The calculation of kappa statistics is done using the R package irr', so that KappaGUI is essentially a Shiny front-end for irr'.
Adds support for the English language to the koRpus package. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please consider subscribing to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
Access business registration data from the Dutch Chamber of Commerce (Kamer van Koophandel, KvK) through their official API <https://developers.kvk.nl/>. Search for companies by name, location, or registration number. Retrieve detailed business profiles, establishment information, and company name histories. Built on httr2 for robust API interaction with automatic pagination, error handling, and usage tracking.
The King's Health Questionnaire (KHQ) is a disease-specific, self-administered questionnaire designed specific to assess the impact of Urinary Incontinence (UI) on Quality of Life. The questionnaire was developed by Kelleher and collaborators (1997) <doi:10.1111/j.1471-0528.1997.tb11006.x>. It is a simple, acceptable and reliable measure to use in the clinical setting and a research tool that is useful in evaluating UI treatment outcomes. The KHQ five dimensions (KHQ5D) is a condition-specific preference-based measure developed by Brazier and collaborators (2008) <doi:10.1177/0272989X07301820>. Although not as popular as the SF6D <doi:10.1016/S0895-4356(98)00103-6> and EQ-5D <https://euroqol.org/>, the KHQ5D measures health-related quality of life (HRQoL) specifically for UI, not general conditions like the others two instruments mentioned. The KHQ5D ca be used in the clinical and economic evaluation of health care. The subject self-rates their health in terms of five dimensions: Role Limitation (RL), Physical Limitations (PL), Social Limitations (SL), Emotions (E), and Sleep (S). Frequently the states on these five dimensions are converted to a single utility index using country specific value sets, which can be used in the clinical and economic evaluation of health care as well as in population health surveys. This package provides methods to calculate scores for each dimension of the KHQ; converts KHQ item scores to KHQ5D scores; and also calculates the utility index of the KHQ5D.
The running statistics of interest is first extracted using a time window which is slid across the time series, and in each window, the running statistics value is computed. KCP (Kernel Change Point) detection proposed by Arlot et al. (2012) <arXiv:1202.3878> is then implemented to flag the change points on the running statistics (Cabrieto et al., 2018, <doi:10.1016/j.ins.2018.03.010>). Change points are located by minimizing a variance criterion based on the pairwise similarities between running statistics which are computed via the Gaussian kernel. KCP can locate change points for a given k number of change points. To determine the optimal k, the KCP permutation test is first carried out by comparing the variance of the running statistics extracted from the original data to that of permuted data. If this test is significant, then there is sufficient evidence for at least one change point in the data. Model selection is then used to determine the optimal k>0.
Makes visually pleasing diagrams of knot projections using optimized Bezier curves.
Provide routines for filtering and smoothing, forecasting, sampling and Bayesian analysis of Dynamic Generalized Linear Models using the methodology described in Alves et al. (2024)<doi:10.48550/arXiv.2201.05387> and dos Santos Jr. et al. (2024)<doi:10.48550/arXiv.2403.13069>.
This is a C++ mutual information (MI) library based on the k-nearest neighbor (KNN) algorithm. There are three functions provided for computing MI for continuous values, mixed continuous and discrete values, and conditional MI for continuous values. They are based on algorithms by A. Kraskov, et. al. (2004) <doi:10.1103/PhysRevE.69.066138>, BC Ross (2014)<doi:10.1371/journal.pone.0087357>, and A. Tsimpiris (2012) <doi:10.1016/j.eswa.2012.05.014>, respectively.
This package implements the Lilliefors-corrected Kolmogorov-Smirnov test for use in goodness-of-fit tests, suitable when population parameters are unknown and must be estimated by sample statistics. P-values are estimated by simulation. Can be used with a variety of continuous distributions, including normal, lognormal, univariate mixtures of normals, uniform, loguniform, exponential, gamma, and Weibull distributions. Functions to generate random numbers and calculate density, distribution, and quantile functions are provided for use with the log uniform and mixture distributions.
This package provides a user-friendly interface for interacting with the District Health Information Software 2 (DHIS2) instance. It streamlines data retrieval, empowering researchers, analysts, and healthcare professionals to obtain and utilize data efficiently.
Clustering typically assigns data points into discrete groups, but the clusters can sometimes be indistinct. Cluster sharpening adjusts an existing clustering to create contrast between groups. This package provides a general interface for cluster sharpening along with several implementations based on different excision criteria.
Quality of life functions for interactive programming. Shortcuts for common combinations of functions or different default arguments. Not to be used in production level scripts, but useful for exploring and quickly manipulating data for easy analysis. Also imports a variety of packages to facilitate the installation of those imported packages on the host machine.
This package provides a set of functions designed to quickly generate results of a multiple choice test. Generates detailed global results, lists for anonymous feedback and personalised result feedback (in LaTeX and/or PDF format), as well as item statistics like Cronbach's alpha or disciminatory power. klausuR also includes a plugin for the R GUI and IDE RKWard, providing graphical dialogs for its basic features. The respective R package rkward cannot be installed directly from a repository, as it is a part of RKWard. To make full use of this feature, please install RKWard from <https://rkward.kde.org> (plugins are detected automatically). Due to some restrictions on CRAN, the full package sources are only available from the project homepage.
Implementation of various kernel adaptive methods in nonparametric curve estimation like density estimation as introduced in Stute and Srihera (2011) <doi:10.1016/j.spl.2011.01.013> and Eichner and Stute (2013) <doi:10.1016/j.jspi.2012.03.011> for pointwise estimation, and like regression as described in Eichner and Stute (2012) <doi:10.1080/10485252.2012.760737>.
Rcpp implementation of the multivariate Kim filter, which combines the Kalman and Hamilton filters for state probability inference. The filter is designed for state space models and can handle missing values and exogenous data in the observation and state equations. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Criteria and algorithms for sequentially estimating level sets of a multivariate numerical function, possibly observed with noise.
Kernel functions for diverse types of data (including, but not restricted to: nonnegative and real vectors, real matrices, categorical and ordinal variables, sets, strings), plus other utilities like kernel similarity, kernel Principal Components Analysis (PCA) and features importance for Support Vector Machines (SVMs), which expand other R packages like kernlab'.
Retrieve data from kintone (<https://www.kintone.com/>) via its API. kintone is an enterprise application platform.
k Nearest Neighbors with variable selection, combine grid search and forward selection to achieve variable selection in order to improve k Nearest Neighbors predictive performance.
Density, distribution function, quantile function and random generation for the K-distribution. A plotting function that plots data on Weibull paper and another function to draw additional lines. See results from package in T Lamont-Smith (2018), submitted J. R. Stat. Soc.