Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides utilities for Kokudo Suuchi', the GIS data service of the Japanese government. See <https://nlftp.mlit.go.jp/index.html> for more information.
State space modelling is an efficient and flexible framework for statistical inference of a broad class of time series and other data. KFAS includes computationally efficient functions for Kalman filtering, smoothing, forecasting, and simulation of multivariate exponential family state space models, with observations from Gaussian, Poisson, binomial, negative binomial, and gamma distributions. See the paper by Helske (2017) <doi:10.18637/jss.v078.i10> for details.
Helper functions for creating formatted summary of regression models, writing publication-ready tables to latex files, and running Monte Carlo experiments.
This package provides a collection of personal helper functions to avoid redundancy in the spirit of the "Don't repeat yourself" principle of software development (<https://en.wikipedia.org/wiki/Don%27t_repeat_yourself>).
The format KVH is a lightweight format that can be read/written both by humans and machines. It can be useful in situations where XML or alike formats seem to be an overkill. We provide an ability to parse KVH files in R pretty fast due to Rcpp use.
Interface to Keras <https://keras.io>, a high-level neural networks API'. Keras was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
Kernel Learning Integrative Clustering (KLIC) is an algorithm that allows to combine multiple kernels, each representing a different measure of the similarity between a set of observations. The contribution of each kernel on the final clustering is weighted according to the amount of information carried by it. As well as providing the functions required to perform the kernel-based clustering, this package also allows the user to simply give the data as input: the kernels are then built using consensus clustering. Different strategies to choose the best number of clusters are also available. For further details please see Cabassi and Kirk (2020) <doi:10.1093/bioinformatics/btaa593>.
Interface to Keras <https://keras.io>, a high-level neural networks API. Keras was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
The knockoff filter is a general procedure for controlling the false discovery rate (FDR) when performing variable selection. For more information, see the website below and the accompanying paper: Candes et al., "Panning for gold: model-X knockoffs for high-dimensional controlled variable selection", J. R. Statist. Soc. B (2018) 80, 3, pp. 551-577.
Knowledge graphs enable to efficiently visualize and gain insights into large-scale data analysis results, as p-values from multiple studies or embedding data matrices. The usual workflow is a user providing a data frame of association studies results and specifying target nodes, e.g. phenotypes, to visualize. The knowledge graph then shows all the features which are significantly associated with the phenotype, with the edges being proportional to the association scores. As the user adds several target nodes and grouping information about the nodes such as biological pathways, the construction of such graphs soon becomes complex. The kgraph package aims to enable users to easily build such knowledge graphs, and provides two main features: first, to enable building a knowledge graph based on a data frame of concepts relationships, be it p-values or cosine similarities; second, to enable determining an appropriate cut-off on cosine similarities from a complete embedding matrix, to enable the building of a knowledge graph directly from an embedding matrix. The kgraph package provides several display, layout and cut-off options, and has already proven useful to researchers to enable them to visualize large sets of p-value associations with various phenotypes, and to quickly be able to visualize embedding results. Two example datasets are provided to demonstrate these behaviors, and several live shiny applications are hosted by the CELEHS laboratory and Parse Health, as the KESER Mental Health application <https://keser-mental-health.parse-health.org/> based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.
This package provides tools for applying Krippendorff's Alpha methodology <DOI:10.1080/19312450709336664>. Both the customary methodology and Hughes methodology <DOI:10.48550/arXiv.2210.13265> are supported, the former being preferred for larger datasets, the latter for smaller datasets. The framework supports common and user-defined distance functions, and can accommodate any number of units, any number of coders, and missingness. Interval estimation can be done in parallel for either methodology.
This package provides a shiny application for forensic kinship testing, based on the pedsuite R packages. KLINK is closely aligned with the (non-R) software Familias and FamLink', but offers several unique features, including visualisations and automated report generation. The calculation of likelihood ratios supports pairs of linked markers, and all common mutation models.
We developed a package Keyboard for designing single-agent, drug-combination, or phase I/II dose-finding clinical trials. The Keyboard designs are novel early phase trial designs that can be implemented simply and transparently, similar to the 3+3 design, but yield excellent performance, comparable to those of more-complicated, model-based designs (Yan F, Mandrekar SJ, Yuan Y (2017) <doi:10.1158/1078-0432.CCR-17-0220>, Li DH, Whitmore JB, Guo W, Ji Y. (2017) <doi:10.1158/1078-0432.CCR-16-1125>, Liu S, Johnson VE (2016) <doi:10.1093/biostatistics/kxv040>, Zhou Y, Lee JJ, Yuan Y (2019) <doi:10.1002/sim.8475>, Pan H, Lin R, Yuan Y (2020) <doi:10.1016/j.cct.2020.105972>). The Keyboard package provides tools for designing, conducting, and analyzing single-agent, drug-combination, and phase I/II dose-finding clinical trials. For more details about how to use this packge, please refer to Li C, Sun H, Cheng C, Tang L, and Pan H. (2022) "A software tool for both the maximum tolerated dose and the optimal biological dose finding trials in early phase designs". Manuscript submitted for publication.
Helps make implicit data assumptions explicit by attaching keys to flat-file data that error when those assumptions are violated. Designed for CSV-first workflows without database infrastructure or version control. Provides key definition, assumption checks, join diagnostics, and optional drift detection against reference snapshots.
Most importantly, calculates Kullback-Leibler Divergence (KLD), Turing's perspective estimator and their confidence intervals.
Implementation of the KCMeans regression estimator studied by Wiemann (2023) <arXiv:2311.17021> for expectation function estimation conditional on categorical variables. Computation leverages the unconditional KMeans implementation in one dimension using dynamic programming algorithm of Wang and Song (2011) <doi:10.32614/RJ-2011-015>, allowing for global solutions in time polynomial in the number of observed categories.
Adds support for the English language to the koRpus package. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please consider subscribing to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
This package provides functions for analysing eye tracking data, including event detection, visualizations and area of interest (AOI) based analyses. The package includes implementations of the IV-T, I-DT, adaptive velocity threshold, and Identification by two means clustering (I2MC) algorithms. See separate documentation for each function. The principles underlying I-VT and I-DT algorithms are described in Salvucci & Goldberg (2000,\doi10.1145/355017.355028). Two-means clustering is described in Hessels et al. (2017, \doi10.3758/s13428-016-0822-1). The adaptive velocity threshold algorithm is described in Nyström & Holmqvist (2010,\doi10.3758/BRM.42.1.188). See a demonstration in the URL.
Make computer vision tasks approachable in R by leveraging Large Language Models. Providing fine-tuned prompts, boilerplate functions, and input/output helpers for common computer vision workflows, such as classifying and describing images. Functions are designed to take images as input and return structured data, helping users build practical applications with minimal code.
Offers a graphical user interface for the evaluation of inter-rater agreement with Cohen's and Fleiss Kappa. The calculation of kappa statistics is done using the R package irr', so that KappaGUI is essentially a Shiny front-end for irr'.
Analysis of kin-cohort studies. kin.cohort provides estimates of age-specific cumulative risk of a disease for carriers and noncarriers of a mutation. The cohorts are retrospectively built from relatives of probands for whom the genotype is known. Currently the method of moments and marginal maximum likelihood are implemented. Confidence intervals are calculated from bootstrap samples. Most of the code is a translation from previous MATLAB code by N. Chatterjee.
This package provides a function that uses a genetic algorithm to search for a subset of size k from the integers 1:n, such that a user-supplied objective function is minimized at that subset. The selection step is done by tournament selection based on ranks, and elitism may be used to retain a portion of the best solutions from one generation to the next. Population objective function values may optionally be evaluated in parallel.
Computes group centrality scores and identifies the most central group of players in a network.
Prediction with k* nearest neighbor algorithm based on a publication by Anava and Levy (2016) <arXiv:1701.07266>.