Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of hypothesis tests and confidence intervals based on the likelihood ratio <https://en.wikipedia.org/wiki/Likelihood-ratio_test>.
The reference implementation of model equations and default parameters for the toxicokinetic-toxicodynamic (TKTD) model of the Lemna (duckweed) aquatic plant. Lemna is a standard test macrophyte used in ecotox effect studies. The model was described and published by the SETAC Europe Interest Group Effect Modeling. It is a refined description of the Lemna TKTD model published by Schmitt et al. (2013) <doi:10.1016/j.ecolmodel.2013.01.017>.
Cellular cooperation compromises the established method of calculating clonogenic activity from limiting dilution assay (LDA) data. This tool provides functions that enable robust analysis in presence or absence of cellular cooperation. The implemented method incorporates the same cooperativity module to model the non-linearity associated with cellular cooperation as known from the colony formation assay (Brix et al. (2021) <doi:10.1038/s41596-021-00615-0>: "Analysis of clonogenic growth in vitro." Nature protocols).
This package provides a variety of models to analyze latent variables based on Bayesian learning: the partially CFA (Chen, Guo, Zhang, & Pan, 2020) <DOI: 10.1037/met0000293>; generalized PCFA; partially confirmatory IRM (Chen, 2020) <DOI: 10.1007/s11336-020-09724-3>; Bayesian regularized EFA <DOI: 10.1080/10705511.2020.1854763>; Fully and partially EFA.
Extracts and creates an analysis pipeline for the JSON data files from Brain Sense sessions using Medtronic's Deep Brain Stimulation surgery electrode implants.
Syntactic shortcuts for creating synthetic lists, vectors, data frames, and matrices using list comprehension.
This package provides functions to fits simple linear regression models with log normal errors and identity link, i.e. taking the responses on the original scale. See Muggeo (2018) <doi:10.13140/RG.2.2.18118.16965>.
This package contains functions for a flexible varying-coefficient landmark model by incorporating multiple short-term events into the prediction of long-term survival probability. For more information about landmark prediction please see Li, W., Ning, J., Zhang, J., Li, Z., Savitz, S.I., Tahanan, A., Rahbar.M.H., (2023+). "Enhancing Long-term Survival Prediction with Multiple Short-term Events: Landmarking with A Flexible Varying Coefficient Model".
This package provides drill down functionality for leaflet choropleths in shiny apps.
Linear splines with convenient parametrisations such that (1) coefficients are slopes of consecutive segments or (2) coefficients are slope changes at consecutive knots. Knots can be set manually or at break points of equal-frequency or equal-width intervals covering the range of x'. The implementation follows Greene (2003), chapter 7.2.5.
Several leaflet plugins are integrated, which are available as extension to the leaflet package.
This package provides functions to simulate data from large-scale educational assessments, including background questionnaire data and cognitive item responses that adhere to a multiple-matrix sampled design. The theoretical foundation can be found on Matta, T.H., Rutkowski, L., Rutkowski, D. et al. (2018) <doi:10.1186/s40536-018-0068-8>.
This package produces a PDF diff of two rmarkdown', quarto', Sweave or TeX files, using the external latexdiff utility.
For fitting Bayesian joint latent class and regression models using Gibbs sampling. See the documentation for the model. The technical details of the model implemented here are described in Elliott, Michael R., Zhao, Zhangchen, Mukherjee, Bhramar, Kanaya, Alka, Needham, Belinda L., "Methods to account for uncertainty in latent class assignments when using latent classes as predictors in regression models, with application to acculturation strategy measures" (2020) In press at Epidemiology <doi:10.1097/EDE.0000000000001139>.
This package implements local spatial and local spatiotemporal Kriging based on local spatial and local spatiotemporal variograms, respectively. The method is documented in Kumar et al (2013) <https://www.nature.com/articles/jes201352)>.
This package provides a ggplot2 extension that focusses on expanding the plotter's arsenal of guides. Guides in ggplot2 include axes and legends. legendry offers new axes and annotation options, as well as new legends and colour displays.
Inference for the Lorenz and penalized Lorenz regressions. More broadly, the package proposes functions to assess inequality and graphically represent it. The Lorenz Regression procedure is introduced in Heuchenne and Jacquemain (2022) <doi:10.1016/j.csda.2021.107347> and in Jacquemain, A., C. Heuchenne, and E. Pircalabelu (2024) <doi:10.1214/23-EJS2200>.
Automatically returns 24 logistic models including 13 individual models and 11 ensembles of models of logistic data. The package also returns 25 plots, 5 tables, and a summary report. The package automatically builds all 24 models, reports all results, and provides graphics to show how the models performed. This can be used for a wide range of data, such as sports or medical data. The package includes medical data (the Pima Indians data set), and information about the performance of Lebron James. The package can be used to analyze many other examples, such as stock market data. The package automatically returns many values for each model, such as True Positive Rate, True Negative Rate, False Positive Rate, False Negative Rate, Positive Predictive Value, Negative Predictive Value, F1 Score, Area Under the Curve. The package also returns 36 Receiver Operating Characteristic (ROC) curves for each of the 24 models.
This package provides a joint latent class model where a hierarchical structure exists, with an interaction between female and male partners of a couple. A Bayesian perspective to inference and Markov chain Monte Carlo algorithms to obtain posterior estimates of model parameters. The reference paper is: Beom Seuk Hwang, Zhen Chen, Germaine M.Buck Louis, Paul S. Albert, (2018) "A Bayesian multi-dimensional couple-based latent risk model with an application to infertility". Biometrics, 75, 315-325. <doi:10.1111/biom.12972>.
This package provides a bridge between the loon and ggplot2 packages. Extends the grammar of ggplot to add clauses to create interactive loon plots. Existing ggplot(s) can be turned into interactive loon plots and loon plots into static ggplot(s); the function loon.ggplot() is the bridge from one plot structure to the other.
This package provides functionality to train and evaluate algorithm selection models for portfolios.
Fit response surfaces for datasets with latent-variable Gaussian process modeling, predict responses for new inputs, and plot latent variables locations in the latent space (only 1D or 2D). The input variables of the datasets can be quantitative, qualitative/categorical or mixed. The output variable of the datasets is a scalar (quantitative). The optimization of the likelihood function is done using a successive approximation/relaxation algorithm similar to another GP modeling package "GPM". The modeling method is published in "A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors" by Yichi Zhang, Siyu Tao, Wei Chen, and Daniel W. Apley (2018) <arXiv:1806.07504>. The package is developed in IDEAL of Northwestern University.
This package provides tools for detecting and correcting sample mix-ups between two sets of measurements, such as between gene expression data on two tissues. Broman et al. (2015) <doi:10.1534/g3.115.019778>.
Additional appenders for the logging package lgr that support logging to Elasticsearch', Dynatrace', AWSCloudWatchLog', databases, syslog', email- and push notifications, and more.