Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Various algorithms related to linguistic fuzzy logic: mining for linguistic fuzzy association rules, composition of fuzzy relations, performing perception-based logical deduction (PbLD), and forecasting time-series using fuzzy rule-based ensemble (FRBE). The package also contains basic fuzzy-related algebraic functions capable of handling missing values in different styles (Bochvar, Sobocinski, Kleene etc.), computation of Sugeno integrals and fuzzy transform.
Nonparametric methods for landmark prediction of long-term survival outcomes, incorporating covariate and short-term event information. The package supports the construction of flexible varying-coefficient models that use discrete covariates, as well as multiple continuous covariates. The goal is to improve prediction accuracy when censored short-term events are available as predictors, using robust nonparametric procedures that do not require correct model specification and avoid restrictive parametric assumptions found in alternative methods. More information on these methods can be found in Parast et al. 2012 <doi:10.1080/01621459.2012.721281>, Parast et al. 2011 <doi:10.1002/bimj.201000150>, and Parast and Cai 2013 <doi:10.1002/sim.5776>. A tutorial for this package is available here: <https://www.laylaparast.com/landpred>.
This package performs Bayesian linear regression and forecasting in astronomy. The method accounts for heteroscedastic errors in both the independent and the dependent variables, intrinsic scatters (in both variables) and scatter correlation, time evolution of slopes, normalization, scatters, Malmquist and Eddington bias, upper limits and break of linearity. The posterior distribution of the regression parameters is sampled with a Gibbs method exploiting the JAGS library.
This package provides methods for fitting log-link GLMs and GAMs to binomial data, including EM-type algorithms with more stable convergence properties than standard methods.
Fitting multivariate data patterns with local principal curves, including tools for data compression (projection) and measuring goodness-of-fit; with some additional functions for mean shift clustering. See Einbeck, Tutz and Evers (2005) <doi:10.1007/s11222-005-4073-8> and Ameijeiras-Alonso and Einbeck (2023) <doi:10.1007/s11634-023-00575-1>.
Trend filtering is a widely used nonparametric method for knot detection. This package provides an efficient solution for L0 trend filtering, avoiding the traditional methods of using Lagrange duality or Alternating Direction Method of Multipliers algorithms. It employ a splicing approach that minimizes L0-regularized sparse approximation by transforming the L0 trend filtering problem. The package excels in both efficiency and accuracy of trend estimation and changepoint detection in segmented functions. References: Wen et al. (2020) <doi:10.18637/jss.v094.i04>; Zhu et al. (2020)<doi:10.1073/pnas.2014241117>; Wen et al. (2023) <doi:10.1287/ijoc.2021.0313>.
This package performs variety of viral quasispecies diversity analyses [see Pamornchainavakul et al. (2024) <doi:10.21203/rs.3.rs-4637890/v1>] based on long-read sequence alignment. Main functions include 1) sequencing error and other noise minimization and read sampling, 2) Single nucleotide variant (SNV) profiles comparison, and 3) viral quasispecies profiles comparison and visualization.
Bayesian model averaging (BMA) algorithms for univariate link latent Gaussian models (ULLGMs). For detailed information, refer to Steel M.F.J. & Zens G. (2024) "Model Uncertainty in Latent Gaussian Models with Univariate Link Function" <doi:10.48550/arXiv.2406.17318>. The package supports various g-priors and a beta-binomial prior on the model space. It also includes auxiliary functions for visualizing and tabulating BMA results. Currently, it offers an out-of-the-box solution for model averaging of Poisson log-normal (PLN) and binomial logistic-normal (BiL) models. The codebase is designed to be easily extendable to other likelihoods, priors, and link functions.
Apply Univariate Long Memory Models, Apply Multivariate Short Memory Models To Hydrological Dataset, Estimate Intensity Duration Frequency curve to rainfall series. NEW -- Calculate the monthly water requirement for herbaceous and arboreal plants.
This package implements methods for analyzing latent variable models with measurement error correction, including Item Response Theory (IRT) models. Provides tools for various correction methods such as Bayesian Markov Chain Monte Carlo (MCMC), over-imputation, bootstrapping for robust standard errors, Ordinary Least Squares (OLS), and Instrumental Variables (IV) based approaches. Supports flexible specification of observable indicators and groupings for latent variable analyses in social sciences and other fields. Methods are described in a working paper (2025) <doi:10.48550/arXiv.2507.22218>.
This package provides test of second-order stationarity for time series (for dyadic and arbitrary-n length data). Provides localized autocovariance, with confidence intervals, for locally stationary (nonstationary) time series. See Nason, G P (2013) "A test for second-order stationarity and approximate confidence intervals for localized autocovariance for locally stationary time series." Journal of the Royal Statistical Society, Series B, 75, 879-904. <doi:10.1111/rssb.12015>.
This package implements the LPC method of Witten&Tibshirani(Annals of Applied Statistics 2008) for identification of significant genes in a microarray experiment.
Calculates 3D lacunarity from voxel data. It is designed for use with point clouds generated from Light Detection And Ranging (LiDAR) scans in order to measure the spatial heterogeneity of 3-dimensional structures such as forest stands. It provides fast C++ functions to efficiently bin point cloud data into voxels and calculate lacunarity using different variants of the gliding-box algorithm originated by Allain & Cloitre (1991) <doi:10.1103/PhysRevA.44.3552>.
Split your rmarkdown or quarto files by sections into a tibble: titles, text, chunks. Rebuild the file from the tibble.
This package provides a suite of functions for reading in a rate file in XML format, stratify a cohort, and calculate SMRs from the stratified cohort and rate file.
Runtime for serving containers that can execute R code on the AWS Lambda serverless compute service <https://aws.amazon.com/lambda/>. Provides the necessary functionality for handling the various endpoints required for accepting new input and sending responses.
The "Manual on Low-flow Estimation and Prediction" (Gustard & Demuth (2009, ISBN:978-92-63-11029-9)), published by the World Meteorological Organisation, gives a comprehensive summary on how to analyse stream flow data focusing on low-flows. This packages provides functions to compute the described statistics and produces plots similar to the ones in the manual.
Latent binary Bayesian neural networks (LBBNNs) are implemented using torch', an R interface to the LibTorch backend. Supports mean-field variational inference as well as flexible variational posteriors using normalizing flows. The standard LBBNN implementation follows Hubin and Storvik (2024) <doi:10.3390/math12060788>, using the local reparametrization trick as in Skaaret-Lund et al. (2024) <https://openreview.net/pdf?id=d6kqUKzG3V>. Input-skip connections are also supported, as described in Høyheim et al. (2025) <doi:10.48550/arXiv.2503.10496>.
Datasets and Functionality from Jan Beran (1994). Statistics for Long-Memory Processes; Chapman & Hall. Estimation of Hurst (and more) parameters for fractional Gaussian noise, fARIMA and FEXP models.
An implementation of the Input-Output model developed by Wassily Leontief that represents the interdependencies between different sectors of a national economy or different regional economies.
This package provides tools to retrieve and summarize taxonomic information and synonymy data for reptile species using data scraped from The Reptile Database website (<https://reptile-database.reptarium.cz/>). Outputs include clean and structured data frames useful for ecological, evolutionary, and conservation research.
Compute lifetime attributable risk of radiation-induced cancer reveals that it can be helpful with enhancement of the flexibility in research with fast calculation and various options. Important reference papers include Berrington de Gonzalez et al. (2012) <doi:10.1088/0952-4746/32/3/205>, National Research Council (2006, ISBN:978-0-309-09156-5).
Automated analysis and modeling of longitudinal omics data (e.g. breath metabolomics') using generalized spline mixed effect models. Including automated filtering of noise parameters and determination of breakpoints.
This package provides R with the Glottolog database <https://glottolog.org/> and some more abilities for purposes of linguistic mapping. The Glottolog database contains the catalogue of languages of the world. This package helps researchers to make a linguistic maps, using philosophy of the Cross-Linguistic Linked Data project <https://clld.org/>, which allows for while at the same time facilitating uniform access to the data across publications. A tutorial for this package is available on GitHub pages <https://docs.ropensci.org/lingtypology/> and package vignette. Maps created by this package can be used both for the investigation and linguistic teaching. In addition, package provides an ability to download data from typological databases such as WALS, AUTOTYP and some others and to create your own database website.