Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Producing probabilistic projections of net migration rate for all countries of the world or for subnational units using a Bayesian hierarchical model by Azose an Raftery (2015) <doi:10.1007/s13524-015-0415-0>.
Propose a parametric fit for censored linear regression models based on SMSN distributions, from a Bayesian perspective. Also, generates SMSN random variables.
Fits Cox model via stochastic gradient descent. This implementation avoids computational instability of the standard Cox Model when dealing large datasets. Furthermore, it scales up with large datasets that do not fit the memory. It also handles large sparse datasets using proximal stochastic gradient descent algorithm. For more details about the method, please see Aliasghar Tarkhan and Noah Simon (2020) <arXiv:2003.00116v2>.
Calculates nonparametric pointwise confidence intervals for the survival distribution for right censored data, and for medians [Fay and Brittain <DOI:10.1002/sim.6905>]. Has two-sample tests for dissimilarity (e.g., difference, ratio or odds ratio) in survival at a fixed time, and differences in medians [Fay, Proschan, and Brittain <DOI:10.1111/biom.12231>]. Basically, the package gives exact inference methods for one- and two-sample exact inferences for Kaplan-Meier curves (e.g., generalizing Fisher's exact test to allow for right censoring), which are especially important for latter parts of the survival curve, small sample sizes or heavily censored data. Includes mid-p options.
Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in O'Hagan (1995) <DOI:10.1111/j.2517-6161.1995.tb02017.x>, De Santis and Spezzaferri (2001) <DOI:10.1016/S0378-3758(00)00240-8>, Mulder and Xin (2022) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu (2018) <DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to the package Mulder et al. (2021) <DOI:10.18637/jss.v100.i18> and the relevant methodological papers.
An implementation of sensitivity and robustness methods in Bayesian networks in R. It includes methods to perform parameter variations via a variety of co-variation schemes, to compute sensitivity functions and to quantify the dissimilarity of two Bayesian networks via distances and divergences. It further includes diagnostic methods to assess the goodness of fit of a Bayesian networks to data, including global, node and parent-child monitors. Reference: M. Leonelli, R. Ramanathan, R.L. Wilkerson (2022) <doi:10.1016/j.knosys.2023.110882>.
Evaluates the probability density function, cumulative distribution function, quantile function, random numbers, survival function, hazard rate function, and maximum likelihood estimates for the following distributions: Bell exponential, Bell extended exponential, Bell Weibull, Bell extended Weibull, Bell-Fisk, Bell-Lomax, Bell Burr-XII, Bell Burr-X, complementary Bell exponential, complementary Bell extended exponential, complementary Bell Weibull, complementary Bell extended Weibull, complementary Bell-Fisk, complementary Bell-Lomax, complementary Bell Burr-XII and complementary Bell Burr-X distribution. Related work includes: a) Fayomi A., Tahir M. H., Algarni A., Imran M. and Jamal F. (2022). "A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>. b) Alanzi, A. R., Imran M., Tahir M. H., Chesneau C., Jamal F. Shakoor S. and Sami, W. (2023). "Simulation analysis, properties and applications on a new Burr XII model based on the Bell-X functionalities". AIMS Mathematics, 8(3): 6970-7004. <doi:10.3934/math.2023352>. c) Algarni A. (2022). "Group Acceptance Sampling Plan Based on New Compounded Three-Parameter Weibull Model". Axioms, 11(9): 438. <doi:10.3390/axioms11090438>.
BRIC-seq is a genome-wide approach for determining RNA stability in mammalian cells. This package provides a series of functions for performing quality check of your BRIC-seq data, calculation of RNA half-life for each transcript and comparison of RNA half-lives between two conditions.
This package provides a set of R functions and data sets for the book "Understanding Computational Bayesian Statistics." This book was written by Bill (WM) Bolstad and published in 2009 by John Wiley & Sons (ISBN 978-0470046098).
Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.
From a given data frame, this package learns its Bayesian network structure based on a selected score.
MCMC algorithms & processing functions for: 1. single response multiple regression, see Papageorgiou, G. (2018) <doi: 10.32614/RJ-2018-069>, 2. multivariate response multiple regression, with nonparametric models for the means, the variances and the correlation matrix, with variable selection, see Papageorgiou, G. and Marshall, B. C. (2020) <doi: 10.1080/10618600.2020.1739534>, 3. joint mean-covariance models for multivariate responses, see Papageorgiou, G. (2022) <doi: 10.1002/sim.9376>, and 4.Dirichlet process mixtures, see Papageorgiou, G. (2019) <doi: 10.1111/anzs.12273>.
This package provides functions to compute distances between probability measures or any other data object than can be posed in this way, entropy measures for samples of curves, distances and depth measures for functional data, and the Generalized Mahalanobis Kernel distance for high dimensional data. For further details about the metrics please refer to Martos et al (2014) <doi:10.3233/IDA-140706>; Martos et al (2018) <doi:10.3390/e20010033>; Hernandez et al (2018, submitted); Martos et al (2018, submitted).
Fully Bayesian inference for estimating the number of clusters and related parameters to heterogeneous binary data.
Time series regression using dynamic linear models fit using MCMC. See Scott and Varian (2014) <DOI:10.1504/IJMMNO.2014.059942>, among many other sources.
Implementation of the bootkmeans algorithm, a bootstrap augmented k-means algorithm that returns probabilistic cluster assignments. From paper by Ghashti, J.S., Andrews, J.L. Thompson, J.R.J., Epp, J. and H.S. Kochar (2025), "A bootstrap augmented k-means algorithm for fuzzy partitions" (Submitted).
Skinfold measurements is one of the most popular and practical methods for estimating percent body fat. Body composition is a term that describes the relative proportions of fat, bone, and muscle mass in the human body. Following the collection of skinfold measurements, regression analysis (a statistical procedure used to predict a dependent variable based on one or more independent or predictor variables) is used to estimate total percent body fat in humans. <doi:10.4324/9780203868744>.
Resurrects the standard plot for shapes established by the base and graphics packages. This is suited to workflows that require plotting using the established and traditional idioms of plotting spatially coincident data where it belongs. This package depends on sf and only replaces the plot method.
This package provides tools for identifying subgroups within populations based on individual response patterns to specific interventions or treatments. Designed to support researchers and clinicians in exploring heterogeneous treatment effects and developing personalized therapeutic strategies. Offers functionality for analyzing and visualizing the interplay between two variables, thereby enhancing the interpretation of social sustainability metrics. The package focuses on bivariate discriminant analysis and aims to clarify relationships between indicator variables.
Tests the parallel regression assumption wit the brant test by Brant (1990) <doi: 10.2307/2532457> for ordinal logit models generated with the function polr() from the package MASS'.
Reading and writing BibTeX files using data frames in R sessions.
At the Swiss Federal Statistical Office (SFSO), spatial maps of Switzerland are available free of charge as Cartographic bases for small-scale thematic mapping'. This package contains convenience functions to import ESRI (Environmental Systems Research Institute) shape files using the package sf and to plot them easily and quickly without having to worry too much about the technical details. It contains utilities to combine multiple areas to one single polygon and to find neighbours for single regions. For any point on a map, a special locator can be used to determine to which municipality, district or canton it belongs.
This package provides tools to create, validate, and export BioCompute Objects described in King et al. (2019) <doi:10.17605/osf.io/h59uh>. Users can encode information in data frames, and compose BioCompute Objects from the domains defined by the standard. A checksum validator and a JSON schema validator are provided. This package also supports exporting BioCompute Objects as JSON, PDF, HTML, or Word documents, and exporting to cloud-based platforms.
This package contains a split population survival estimator that models the misclassification probability of failure versus right-censored events. The split population survival estimator is described in Bagozzi et al. (2019) <doi:10.1017/pan.2019.6>.