Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Helper functions to implement univariate and bivariate latent change score models in R using the lavaan package. For details about Latent Change Score Modeling (LCSM) see McArdle (2009) <doi:10.1146/annurev.psych.60.110707.163612> and Grimm, An, McArdle, Zonderman and Resnick (2012) <doi:10.1080/10705511.2012.659627>. The package automatically generates lavaan syntax for different model specifications and varying timepoints. The lavaan syntax generated by this package can be returned and further specifications can be added manually. Longitudinal plots as well as simplified path diagrams can be created to visualise data and model specifications. Estimated model parameters and fit statistics can be extracted as data frames. Data for different univariate and bivariate LCSM can be simulated by specifying estimates for model parameters to explore their effects. This package combines the strengths of other R packages like lavaan', broom', and semPlot by generating lavaan syntax that helps these packages work together.
Routines for fitting Logic Regression models. Logic Regression is described in Ruczinski, Kooperberg, and LeBlanc (2003) <DOI:10.1198/1061860032238>. Monte Carlo Logic Regression is described in and Kooperberg and Ruczinski (2005) <DOI:10.1002/gepi.20042>.
An implementation of algorithms described in Jewell and Witten (2017) <arXiv:1703.08644>.
Estimating causal parameters in the presence of treatment spillover is of great interest in statistics. This package provides tools for instrumental variables estimation of average causal effects under network interference of unknown form. The target parameters are the local average direct effect, the local average indirect effect, the local average overall effect, and the local average spillover effect. The methods are developed by Hoshino and Yanagi (2023) <doi:10.48550/arXiv.2108.07455>.
This package provides functions and tools for using open GIS and remote sensing command-line interfaces in a reproducible environment.
Targeted Maximum Likelihood Estimation ('TMLE') of treatment/censoring specific mean outcome or marginal structural model for point-treatment and longitudinal data.
Common coordinate-based workflows involving processed chromatin loop and genomic element data are considered and packaged into appropriate customizable functions. Includes methods for linking element sets via chromatin loops and creating consensus loop datasets.
Convert Leaf Area Index (LAI) from the Normalized Difference Vegetation Index (NDVI) using available equations from literature. Detailed description of conversion equations in Bajocco et al. 2022 <doi:10.3390/rs14153554>.
This package implements non-parametric tests from Higgins (2004, ISBN:0534387756), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with Rcpp for efficiency and R6 for flexible, object-oriented design, the package provides a unified framework for performing or creating custom permutation tests.
Clustering or classification of longitudinal data based on a mixture of multivariate t or Gaussian distributions with a Cholesky-decomposed covariance structure. Details in McNicholas and Murphy (2010) <doi:10.1002/cjs.10047> and McNicholas and Subedi (2012) <doi:10.1016/j.jspi.2011.11.026>.
This package contains a collection of useful functions for basic data computation and manipulation, wrapper functions for generating ggplot2 graphics, including statistical model diagnostic plots, methods for computing statistical models quality measures (such as AIC, BIC, r squared, root mean squared error) and general utilities.
Simplify the loading matrix in factor models using the l1 criterion as proposed in Freyaldenhoven (2025) <doi:10.21799/frbp.wp.2020.25>. Given a data matrix, find the rotation of the loading matrix with the smallest l1-norm and/or test for the presence of local factors with main function local_factors().
Conducts various numerical analyses and simulations in population genetics and evolutionary theory, primarily for the purpose of teaching (and learning about) key concepts in population & quantitative genetics, and evolutionary theory.
Access to the Greek New Testament (27 books) and the Old Testament (39 books) and allow users to do textual analysis on the data. The New and Old Testament have been provided in their original languages, Greek and Hebrew, respectively. Additionally, the Revised American Standard Bible is also provided for users who'd rather use a wordâ forâ word modern English translation.
This package performs analysis of Differential Item Functioning (DIF) for dichotomous and polytomous items using an iterative hybrid of ordinal logistic regression and item response theory (IRT) according to Choi, Gibbons, and Crane (2011) <doi:10.18637/jss.v039.i08>.
Functionalities for calculating the local score and calculating statistical relevance (p-value) to find a local Score in a sequence of given distribution (S. Mercier and J.-J. Daudin (2001) <https://hal.science/hal-00714174/>) ; S. Karlin and S. Altschul (1990) <https://pmc.ncbi.nlm.nih.gov/articles/PMC53667/> ; S. Mercier, D. Cellier and F. Charlot (2003) <https://hal.science/hal-00937529v1/> ; A. Lagnoux, S. Mercier and P. Valois (2017) <doi:10.1093/bioinformatics/btw699> ).
Reads raw files from Li-COR gas analyzers and produces a dataframe that can directly be used with fluxible <https://cran.r-project.org/package=fluxible>.
This package contains a suite of shiny applications meant to explore linear model inference feature through simulation and games.
This package contains functions to help create log files. The package aims to overcome the difficulty of the base R sink() command. The log_print() function will print to both the console and the file log, without interfering in other write operations.
This package provides a nonparametric method to approximate Laplacian graph spectra of a network with ordered vertices. This provides a computationally efficient algorithm for obtaining an accurate and smooth estimate of the graph Laplacian basis. The approximation results can then be used for tasks like change point detection, k-sample testing, and so on. The primary reference is Mukhopadhyay, S. and Wang, K. (2018, Technical Report).
Calculation of rectifying LTPD and AOQL plans for sampling inspection by variables which minimize mean inspection cost per lot of process average quality.
This package provides S3 classes to represent low rank matrix decompositions.
This package implements novel nonparametric approaches to address biases and confounding when comparing treatments or exposures in observational studies of outcomes. While designed and appropriate for use in studies involving medicine and the life sciences, the package can be used in other situations involving outcomes with multiple confounders. The package implements a family of methods for non-parametric bias correction when comparing treatments in observational studies, including survival analysis settings, where competing risks and/or censoring may be present. The approach extends to bias-corrected personalized predictions of treatment outcome differences, and analysis of heterogeneity of treatment effect-sizes across patient subgroups. For further details, please see: Lauve NR, Nelson SJ, Young SS, Obenchain RL, Lambert CG. LocalControl: An R Package for Comparative Safety and Effectiveness Research. Journal of Statistical Software. 2020. p. 1â 32. Available from <doi:10.18637/jss.v096.i04>.
Compute and visualize using the visNetwork package all the bivariate correlations of a dataframe. Several and different types of correlation coefficients (Pearson's r, Spearman's rho, Kendall's tau, distance correlation, maximal information coefficient and equal-freq discretization-based maximal normalized mutual information) are used according to the variable couple type (quantitative vs categorical, quantitative vs quantitative, categorical vs categorical).