Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a variety of latent Markov models, including hidden Markov models, hidden semi-Markov models, state-space models and continuous-time variants can be formulated and estimated within the same framework via directly maximising the likelihood function using the so-called forward algorithm. Applied researchers often need custom models that standard software does not easily support. Writing tailored R code offers flexibility but suffers from slow estimation speeds. We address these issues by providing easy-to-use functions (written in C++ for speed) for common tasks like the forward algorithm. These functions can be combined into custom models in a Lego-type approach, offering up to 10-20 times faster estimation via standard numerical optimisers. To aid in building fully custom likelihood functions, several vignettes are included that show how to simulate data from and estimate all the above model classes.
Computes log-transformed kernel density estimates for positive data using a variety of kernels. It follows the methods described in Jones, Nguyen and McLachlan (2018) <doi:10.21105/joss.00870>.
Bayesian Survival models via the mixture of Log-Normal distribution extends the well-known survival models and accommodates different behaviour over time and considers higher censored survival times. The proposal combines mixture distributions Fruhwirth-Schnatter(2006) <doi:10.1007/s11336-009-9121-4>, and data augmentation techniques Tanner and Wong (1987) <doi:10.1080/01621459.1987.10478458>.
Automatic detection of hyperlinks for packages and calls in the text of rmarkdown or quarto documents.
Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skews, cross-loadings, wording effects, population errors, and local dependencies can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011) <doi:10.1177/0013164410389489>.
An emulator designed for rapid sequential emulation (e.g., Markov chain Monte Carlo applications). Works via extension of the laGP approach by Gramacy and Apley (2015 <doi:10.1080/10618600.2014.914442>). Details are given in Rumsey et al. (2023 <doi:10.1002/sta4.576>).
Likelihood-based estimation of individual growth and sexual maturity models for organisms, usually fish and invertebrates. It includes methods for data organization, plotting standard exploratory and analytical plots, predictions.
Hidden Markov Model (HMM) based on symmetric lambda distribution framework is implemented for the study of return time-series in the financial market. Major features in the S&P500 index, such as regime identification, volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM cleanly. Univariate symmetric lambda distribution is essentially a location-scale family of exponential power distribution. Such distribution is suitable for describing highly leptokurtic time series obtained from the financial market. It provides a theoretically solid foundation to explore such data where the normal distribution is not adequate. The HMM implementation follows closely the book: "Hidden Markov Models for Time Series", by Zucchini, MacDonald, Langrock (2016).
Simplifies the whole process of creating stacked tilted maps, that are often used in scientific publications to show different environmental layers for a geographical region. Tilting maps and layering them allows to easily draw visual correlations between these environmental layers.
The solution of equality constrained least squares problem (LSE) is given through four analytics methods (Generalized QR Factorization, Lagrange Multipliers, Direct Elimination and Null Space method). We expose the orthogonal decomposition called Generalized QR Factorization (GQR) and also RQ factorization. Finally some codes for the solution of LSE applied in quaternions.
Insieme di funzioni di supporto al volume "Laboratorio di Statistica con R", Iacus-Masarotto, MacGraw-Hill Italia, 2006. This package contains sets of functions defined in "Laboratorio di Statistica con R", Iacus-Masarotto, MacGraw-Hill Italia, 2006. Function names and docs are in italian as well.
Effectively simulates the discretization process inherent to Likert scales while minimizing distortion. It converts continuous latent variables into ordinal categories to generate Likert scale item responses. Particularly useful for accurately modeling and analyzing survey data that use Likert scales, especially when applying statistical techniques that require metric data.
Fit and simulate latent position and cluster models for statistical networks. See Krivitsky and Handcock (2008) <doi:10.18637/jss.v024.i05> and Krivitsky, Handcock, Raftery, and Hoff (2009) <doi:10.1016/j.socnet.2009.04.001>.
Client for programmatic access to the Lake Multi-scaled Geospatial and Temporal database <https://lagoslakes.org>, with functions for accessing lake water quality and ecological context data for the US.
Dimensionality reduction techniques for binary data including logistic PCA.
Back-end connections to LattE (<https://www.math.ucdavis.edu/~latte/>) for counting lattice points and integration inside convex polytopes and 4ti2 (<http://www.4ti2.de/>) for algebraic, geometric, and combinatorial problems on linear spaces and front-end tools facilitating their use in the R ecosystem.
This package provides a collection of tools for the calculation of freewater metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the airĂ¢ water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models).
Curated datasets from US Long Term Ecological Research sites.
Create small multiples of several leaflet web maps with (optional) synchronised panning and zooming control. When syncing is enabled all maps respond to mouse actions on one map. This allows side-by-side comparisons of different attributes of the same geometries. Syncing can be adjusted so that any combination of maps can be synchronised.
Constructs genotype x environment interaction (GxE) models where G is a weighted sum of genetic variants (genetic score) and E is a weighted sum of environments (environmental score) using the alternating optimization algorithm by Jolicoeur-Martineau et al. (2017) <arXiv:1703.08111>. This approach has greatly enhanced predictive power over traditional GxE models which include only a single genetic variant and a single environmental exposure. Although this approach was originally made for GxE modelling, it is flexible and does not require the use of genetic and environmental variables. It can also handle more than 2 latent variables (rather than just G and E) and 3-way interactions or more. The LEGIT model produces highly interpretable results and is very parameter-efficient thus it can even be used with small sample sizes (n < 250). Tools to determine the type of interaction (vantage sensitivity, diathesis-stress or differential susceptibility), with any number of genetic variants or environments, are available <arXiv:1712.04058>. The software can now produce mixed-effects LEGIT models through the lme4 package.
Four measures of linkage disequilibrium are provided: the usual r^2 measure, the r^2_S measure (r^2 corrected by the structure sample), the r^2_V (r^2 corrected by the relatedness of genotyped individuals), the r^2_VS measure (r^2 corrected by both the relatedness of genotyped individuals and the structure of the sample).
This package provides functions for the implementation of a density goodness-of-fit test, based on piecewise approximation of the L2 distance.
Implementation of robust and sparse PCA algorithm of Wang and Van Aelst (2019) <DOI:10.1080/00401706.2019.1671234>.
In Latent Space Item Response Models, subjects and items are embedded in a multidimensional Euclidean latent space. As such, interactions among persons, items, and person-item combinations can be revealed that are unmodelled in more conventional item response theory models. This package implements the methods from Molenaar & Jeon (in press) and can be used to fit Latent Space Item Response Models to data using joint maximum likelihood estimation. The package can handle binary data, ordinal data, and data with mixed scales. The package incorporates facilities for data simulation, rotation of the latent space, and K-fold cross-validation to select the number of dimensions of the latent space.