Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The Lorentz transform in special relativity; also the gyrogroup structure of three-velocities. Performs active and passive transforms and has the ability to use units in which the speed of light is not unity. Includes some experimental functionality for celerity and rapidity. For general relativity, see the schwarzschild package.
Identification of equilibrium locations in location games (Hotelling (1929) <doi:10.2307/2224214>). In these games, two competing actors place customer-serving units in two locations simultaneously. Customers make the decision to visit the location that is closest to them. The functions in this package include Prim algorithm (Prim (1957) <doi:10.1002/j.1538-7305.1957.tb01515.x>) to find the minimum spanning tree connecting all network vertices, an implementation of Dijkstra algorithm (Dijkstra (1959) <doi:10.1007/BF01386390>) to find the shortest distance and path between any two vertices, a self-developed algorithm using elimination of purely dominated strategies to find the equilibrium, and several plotting functions.
This package contains a collection of useful functions for basic data computation and manipulation, wrapper functions for generating ggplot2 graphics, including statistical model diagnostic plots, methods for computing statistical models quality measures (such as AIC, BIC, r squared, root mean squared error) and general utilities.
Insieme di funzioni di supporto al volume "Laboratorio di Statistica con R", Iacus-Masarotto, MacGraw-Hill Italia, 2006. This package contains sets of functions defined in "Laboratorio di Statistica con R", Iacus-Masarotto, MacGraw-Hill Italia, 2006. Function names and docs are in italian as well.
Compute power and sample size for linear models of longitudinal data. Supported models include mixed-effects models and models fit by generalized least squares and generalized estimating equations. The package is described in Iddi and Donohue (2022) <DOI:10.32614/RJ-2022-022>. Relevant formulas are derived by Liu and Liang (1997) <DOI:10.2307/2533554>, Diggle et al (2002) <ISBN:9780199676750>, and Lu, Luo, and Chen (2008) <DOI:10.2202/1557-4679.1098>.
Uses approximations to compute the natural logarithm of the Gamma function for large values.
Miscellaneous R functions (for graphics, data import, data transformation, and general utilities) and templates (for exploratory analysis, Bayesian modeling, and crafting scientific manuscripts).
Implementations of estimation algorithm of low rank plus sparse structured VAR model by using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). It relates to the algorithm in Sumanta, Li, and Michailidis (2019) <doi:10.1109/TSP.2018.2887401>.
This package provides methods for estimation and statistical inference on directional and fluctuating selection in age-structured populations.
This package provides functions for summarizing, visualizing, and analyzing Likert-scale survey data. Includes support for computing descriptive statistics, Relative Importance Index (RII), reliability analysis (Cronbach's Alpha), and response distribution plots.
Useful shiny production-ready modules and helpers such as login window and visualization tools.
This package provides functions to fits simple linear regression models with log normal errors and identity link, i.e. taking the responses on the original scale. See Muggeo (2018) <doi:10.13140/RG.2.2.18118.16965>.
Supervised classification methods, which (if asked) can provide step-by-step explanations of the algorithms used, as described in PK Josephine et. al., (2021) <doi:10.59176/kjcs.v1i1.1259>; and datasets to test them on, which highlight the strengths and weaknesses of each technique.
Fits a linear excess relative risk model by maximum likelihood, possibly including several variables and allowing for lagged exposures.
Some simple objects and functions to do statistics using linear models and a Bayesian framework.
Solves quadratic programming problems where the Hessian is represented as the product of two matrices. Thanks to Greg Hunt for helping getting this version back on CRAN. The methods in this package are described in: Ormerod, Wand and Koch (2008) "Penalised spline support vector classifiers: computational issues" <doi:10.1007/s00180-007-0102-8>.
LimeSurvey is Free/Libre Open Source Software for the development and administrations of online studies, using sophisticated tailoring capabilities to support multiple study designs (see <https://www.limesurvey.org>). This package supports programmatic creation of surveys that can then be imported into LimeSurvey', as well as user friendly import of responses from LimeSurvey studies.
This package provides a joint latent class model where a hierarchical structure exists, with an interaction between female and male partners of a couple. A Bayesian perspective to inference and Markov chain Monte Carlo algorithms to obtain posterior estimates of model parameters. The reference paper is: Beom Seuk Hwang, Zhen Chen, Germaine M.Buck Louis, Paul S. Albert, (2018) "A Bayesian multi-dimensional couple-based latent risk model with an application to infertility". Biometrics, 75, 315-325. <doi:10.1111/biom.12972>.
Interactive visualization of effects, response functions and marginal effects for different kinds of regression models. In this version linear regression models, generalized linear models, generalized additive models and linear mixed-effects models are supported. Major features are the interactive approach and the handling of the effects of categorical covariates: if two or more factors are used as covariates every combination of the levels of each factor is treated separately. The automatic calculation of marginal effects and a number of possibilities to customize the graphical output are useful features as well.
Miscellaneous scripts, e.g. functionality to make and plot factor diagrams for the statistical design.
This package provides a diverse collection of georeferenced and spatial datasets from different domains including urban studies, housing markets, environmental monitoring, transportation, and socio-economic indicators. The package consolidates datasets from multiple open sources such as Kaggle, chopin, spData, adespatial, and bivariateLeaflet. It is designed for researchers, analysts, and educators interested in spatial analysis, geostatistics, and geographic data visualization. The datasets include point patterns, polygons, socio-economic data frames, and network-like structures, allowing flexible exploration of geospatial phenomena.
This package performs model fitting and significance estimation for Localised Co-Dependency between pairs of features of a numeric dataset.
Estimation of Latent Order Logistic (LOLOG) Models for Networks. LOLOGs are a flexible and fully general class of statistical graph models. This package provides functions for performing MOM, GMM and variational inference. Visual diagnostics and goodness of fit metrics are provided. See Fellows (2018) <doi:10.48550/arXiv.1804.04583> for a detailed description of the methods.
This package provides methods for estimating borders of uniform distribution on the interval (one-dimensional) and on the elliptical domain (two-dimensional) under measurement errors. For one-dimensional case, it also estimates the length of underlying uniform domain and tests the hypothesized length against two-sided or one-sided alternatives. For two-dimensional case, it estimates the area of underlying uniform domain. It works with numerical inputs as well as with pictures in JPG format.