Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computing statistical hypothesis testing for loading in principal component analysis (PCA) (Yamamoto, H. et al. (2014) <doi:10.1186/1471-2105-15-51>), orthogonal smoothed PCA (OS-PCA) (Yamamoto, H. et al. (2021) <doi:10.3390/metabo11030149>), one-sided kernel PCA (Yamamoto, H. (2023) <doi:10.51094/jxiv.262>), partial least squares (PLS) and PLS discriminant analysis (PLS-DA) (Yamamoto, H. et al. (2009) <doi:10.1016/j.chemolab.2009.05.006>), PLS with rank order of groups (PLS-ROG) (Yamamoto, H. (2017) <doi:10.1002/cem.2883>), regularized canonical correlation analysis discriminant analysis (RCCA-DA) (Yamamoto, H. et al. (2008) <doi:10.1016/j.bej.2007.12.009>), multiset PLS and PLS-ROG (Yamamoto, H. (2022) <doi:10.1101/2022.08.30.505949>).
Create custom labels, badges, certificates and other documents. Automate the production of potentially large numbers of herbarium and collection labels, accreditation badges, attendance and participation certificates, etc, and deliver them automatically. Documents are generated in PDF format, which requires a working installation of LaTeX', such as TinyTeX'.
Providing a method for Local Discrimination via Latent Class Models. The approach is described in <https://www.r-project.org/conferences/useR-2009/abstracts/pdf/Bucker.pdf>.
Runtime for serving containers that can execute R code on the AWS Lambda serverless compute service <https://aws.amazon.com/lambda/>. Provides the necessary functionality for handling the various endpoints required for accepting new input and sending responses.
Locally sparse estimator of generalized varying coefficient model for asynchronous longitudinal data by kernel-weighted estimating equation.
Bayesian model averaging (BMA) algorithms for univariate link latent Gaussian models (ULLGMs). For detailed information, refer to Steel M.F.J. & Zens G. (2024) "Model Uncertainty in Latent Gaussian Models with Univariate Link Function" <doi:10.48550/arXiv.2406.17318>. The package supports various g-priors and a beta-binomial prior on the model space. It also includes auxiliary functions for visualizing and tabulating BMA results. Currently, it offers an out-of-the-box solution for model averaging of Poisson log-normal (PLN) and binomial logistic-normal (BiL) models. The codebase is designed to be easily extendable to other likelihoods, priors, and link functions.
Implementation of a theoretically supported alternative to k-nearest neighbors for functional data to solve problems of estimating unobserved segments of a partially observed functional data sample, functional classification and outlier detection. The approximating neighbor curves are piecewise functions built from a functional sample. Instead of a distance on a function space we use a locally defined distance function that satisfies stabilization criteria. The package allows the implementation of the methodology and the replication of the results in Elà as, A., Jiménez, R. and Yukich, J. (2020) <arXiv:2007.16059>.
The package compiles functions for calculating prices of American put options with Least Squares Monte Carlo method. The option types are plain vanilla American put, Asian American put, and Quanto American put. The pricing algorithms include variance reduction techniques such as Antithetic Variates and Control Variates. Additional functions are given to derive "price surfaces" at different volatilities and strikes, create 3-D plots, quickly generate Geometric Brownian motion, and calculate prices of European options with Black & Scholes analytical solution.
An extendable toolkit for interactive data visualization and exploration.
This package provides an interface to the financial data platform <https://datahub.limex.com/>., enabling users to retrieve real-time and historical financial data. Functions within the package allow access to instruments, candlestick charts, fundamentals, news, events, models, and trading signals. Authentication is managed through user-specific API tokens, which are securely handled via environment variables.
This package provides access to the Leanpub API <https://leanpub.com/help/api> for gathering information about publications and submissions to the Leanpub platform.
Helpers for customizing selected outputs from lavaan by Rosseel (2012) <doi:10.18637/jss.v048.i02> and print them. The functions are intended to be used by package developers in their packages and so are not designed to be user-friendly. They are designed to be let developers customize the tables by other functions. Currently the parameter estimates tables of a fitted object are supported.
Allows identification of palettes derived from LTER (Long Term Ecological Research) photographs based on user criteria. Also facilitates extraction of palettes from users photos directly.
Statistical tests widely utilized in biostatistics, public policy, and law. Along with the well-known tests for equality of means and variances, randomness, and measures of relative variability, the package contains new robust tests of symmetry, omnibus and directional tests of normality, and their graphical counterparts such as robust QQ plot, robust trend tests for variances, etc. All implemented tests and methods are illustrated by simulations and real-life examples from legal statistics, economics, and biostatistics.
Measure similarity between texts. Offers a variety of processing tools and similarity metrics to facilitate flexible representation of texts and matching. Implements forms of Language Style Matching (Ireland & Pennebaker, 2010) <doi:10.1037/a0020386> and Latent Semantic Analysis (Landauer & Dumais, 1997) <doi:10.1037/0033-295X.104.2.211>.
This package provides modular, graph-based agents powered by large language models (LLMs) for intelligent task execution in R. Supports structured workflows for tasks such as forecasting, data visualization, feature engineering, data wrangling, data cleaning, SQL', code generation, weather reporting, and research-driven question answering. Each agent performs iterative reasoning: recommending steps, generating R code, executing, debugging, and explaining results. Includes built-in support for packages such as tidymodels', modeltime', plotly', ggplot2', and prophet'. Designed for analysts, developers, and teams building intelligent, reproducible AI workflows in R. Compatible with LLM providers such as OpenAI', Anthropic', Groq', and Ollama'. Inspired by the Python package langagent'.
An educational package for teaching statistics and mathematics in both primary and higher education. The objective is to assist in the teaching/learning process, both for student study planning and teacher teaching strategies. The leem package aims to provide, in a simple yet in-depth manner, knowledge of statistics and mathematics to anyone who wants to study these areas of knowledge.
Given independent and identically distributed observations X(1), ..., X(n), compute the maximum likelihood estimator (MLE) of a density as well as a smoothed version of it under the assumption that the density is log-concave, see Rufibach (2007) and Duembgen and Rufibach (2009). The main function of the package is logConDens that allows computation of the log-concave MLE and its smoothed version. In addition, we provide functions to compute (1) the value of the density and distribution function estimates (MLE and smoothed) at a given point (2) the characterizing functions of the estimator, (3) to sample from the estimated distribution, (5) to compute a two-sample permutation test based on log-concave densities, (6) the ROC curve based on log-concave estimates within cases and controls, including confidence intervals for given values of false positive fractions (7) computation of a confidence interval for the value of the true density at a fixed point. Finally, three datasets that have been used to illustrate log-concave density estimation are made available.
This package provides a stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a plant pathogen in a heterogeneous landscape to assess resistance deployment strategies. It is based on a spatial geometry for describing the landscape and allocation of different cultivars, a dispersal kernel for the dissemination of the pathogen, and a SEIR ('Susceptible-Exposed-Infectious-Removedâ ) structure with a discrete time step. It provides a useful tool to assess the performance of a wide range of deployment options with respect to their epidemiological, evolutionary and economic outcomes. Loup Rimbaud, Julien Papaïx, Jean-François Rey, Luke G Barrett, Peter H Thrall (2018) <doi:10.1371/journal.pcbi.1006067>.
Embarrassingly Parallel Linear Mixed Model calculations spread across local cores which repeat until convergence.
This package provides functions that compute the lattice-based density and regression estimators for two-dimensional regions with irregular boundaries and holes. The density estimation technique is described in Barry and McIntyre (2011) <doi:10.1016/j.ecolmodel.2011.02.016>, while the non-parametric regression technique is described in McIntyre and Barry (2018) <doi:10.1080/10618600.2017.1375935>.
Determine a Prototype from a number of runs of Latent Dirichlet Allocation (LDA) measuring its similarities with S-CLOP: A procedure to select the LDA run with highest mean pairwise similarity, which is measured by S-CLOP (Similarity of multiple sets by Clustering with Local Pruning), to all other runs. LDA runs are specified by its assignments leading to estimators for distribution parameters. Repeated runs lead to different results, which we encounter by choosing the most representative LDA run as prototype.
Affords an alternative, vector-based syntax to lavaan', as well as other convenience functions such as naming paths and defining indirect links automatically, in addition to convenience formatting optimized for a publication and script sharing workflow.
Implementation based on Zhang, Jie & Huang, Kun (2014) <doi:10.4137/CIN.S14021> Normalized ImQCM: An Algorithm for Detecting Weak Quasi-Cliques in Weighted Graph with Applications in Gene Co-Expression Module Discovery in Cancers. Cancer informatics, 13, CIN-S14021.