Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides modular, graph-based agents powered by large language models (LLMs) for intelligent task execution in R. Supports structured workflows for tasks such as forecasting, data visualization, feature engineering, data wrangling, data cleaning, SQL', code generation, weather reporting, and research-driven question answering. Each agent performs iterative reasoning: recommending steps, generating R code, executing, debugging, and explaining results. Includes built-in support for packages such as tidymodels', modeltime', plotly', ggplot2', and prophet'. Designed for analysts, developers, and teams building intelligent, reproducible AI workflows in R. Compatible with LLM providers such as OpenAI', Anthropic', Groq', and Ollama'. Inspired by the Python package langagent'.
Datasets for the fourth edition of "Statistics: Unlocking the Power of Data" by Lock^5 Includes versions of datasets from earlier editions.
Calculates 3D lacunarity from voxel data. It is designed for use with point clouds generated from Light Detection And Ranging (LiDAR) scans in order to measure the spatial heterogeneity of 3-dimensional structures such as forest stands. It provides fast C++ functions to efficiently bin point cloud data into voxels and calculate lacunarity using different variants of the gliding-box algorithm originated by Allain & Cloitre (1991) <doi:10.1103/PhysRevA.44.3552>.
This package provides a framework to load text and excel files through a shiny graphical interface. It allows renaming, transforming, ordering and removing variables. It includes basic exploratory methods such as the mean, median, mode, normality test, histogram and correlation.
This package provides functions to upload vectorial data and derive landscape connectivity metrics in habitat or matrix systems. Additionally, includes an approach to assess individual patch contribution to the overall landscape connectivity, enabling the prioritization of habitat patches. The computation of landscape connectivity and patch importance are very useful in Landscape Ecology research. The metrics available are: number of components, number of links, size of the largest component, mean size of components, class coincidence probability, landscape coincidence probability, characteristic path length, expected cluster size, area-weighted flux and integral index of connectivity. Pascual-Hortal, L., and Saura, S. (2006) <doi:10.1007/s10980-006-0013-z> Urban, D., and Keitt, T. (2001) <doi:10.2307/2679983> Laita, A., Kotiaho, J., Monkkonen, M. (2011) <doi:10.1007/s10980-011-9620-4>.
This package implements transfer learning methods for low-rank matrix estimation. These methods leverage similarity in the latent row and column spaces between the source and target populations to improve estimation in the target population. The methods include the LatEnt spAce-based tRaNsfer lEaRning (LEARNER) method and the direct projection LEARNER (D-LEARNER) method described by McGrath et al. (2024) <doi:10.48550/arXiv.2412.20605>.
Simulation and estimation of univariate and multivariate log-GARCH models. The main functions of the package are: lgarchSim(), mlgarchSim(), lgarch() and mlgarch(). The first two functions simulate from a univariate and a multivariate log-GARCH model, respectively, whereas the latter two estimate a univariate and multivariate log-GARCH model, respectively.
Simulate lobster catch process in a trap fishery. Factors such as lobster density on ocean floor, their movement, trap saturation and bait shrinkage rate can be modeled. Details of the methods for modeling those processes can be found in: Addison and Bell (1997) <doi:10.1071/MF97169>.
This package implements local spatial and local spatiotemporal Kriging based on local spatial and local spatiotemporal variograms, respectively. The method is documented in Kumar et al (2013) <https://www.nature.com/articles/jes201352)>.
This package provides a bridge between the loon and ggplot2 packages. Extends the grammar of ggplot to add clauses to create interactive loon plots. Existing ggplot(s) can be turned into interactive loon plots and loon plots into static ggplot(s); the function loon.ggplot() is the bridge from one plot structure to the other.
Estimates a lognormal-Pareto mixture by means of the Expectation-Conditional-Maximization-Either algorithm and by maximizing the profile likelihood function. A likelihood ratio test for discriminating between lognormal and Pareto tail is also implemented. See Bee, M. (2022) <doi:10.1007/s11634-022-00497-4>.
Data sets for Chirok Han (2024, ISBN:979-11-303-1964-3, "Lectures on Econometrics"). Students, teachers, and self-learners will find the data sets essential for replicating the results in the book.
Estimates marginal likelihood from a posterior sample using the method described in Wang et al. (2023) <doi:10.1093/sysbio/syad007>, which does not require evaluation of any additional points and requires only the log of the unnormalized posterior density for each sampled parameter vector.
Translates R help documentation on the fly by using a Large Language model of your choice. If you are using RStudio or Positron the translated help will appear in the help pane.
Computes Logistic Knowledge Tracing ('LKT') which is a general method for tracking human learning in an educational software system. Please see Pavlik, Eglington, and Harrel-Williams (2021) <https://ieeexplore.ieee.org/document/9616435>. LKT is a method to compute features of student data that are used as predictors of subsequent performance. LKT allows great flexibility in the choice of predictive components and features computed for these predictive components. The system is built on top of LiblineaR', which enables extremely fast solutions compared to base glm() in R.
This package provides a largish collection of example datasets, including several classics. Many of these datasets are well suited for regression, classification, and visualization.
Data sets on various litter types like beach litter, riverain litter, floating litter, and seafloor litter are rapidly growing. This package offers a simple user interface to analyse these litter data in a consistent and reproducible way. It also provides functions to facilitate several kinds of litter analysis, e.g., trend analysis, power analysis, and baseline analysis. Under the hood, these functions are also used by the user interface. See Schulz et al. (2019) <doi:10.1016/j.envpol.2019.02.030> for details. MS-Windows users are advised to run litteR in RStudio'. See our vignette: Installation manual for RStudio and litteR'.
Efficient Frequentist profiling and Bayesian marginalization of parameters for which the conditional likelihood is that of a multivariate linear regression model. Arbitrary inter-observation error correlations are supported, with optimized calculations provided for independent-heteroskedastic and stationary dependence structures.
This package provides R with the Glottolog database <https://glottolog.org/> and some more abilities for purposes of linguistic mapping. The Glottolog database contains the catalogue of languages of the world. This package helps researchers to make a linguistic maps, using philosophy of the Cross-Linguistic Linked Data project <https://clld.org/>, which allows for while at the same time facilitating uniform access to the data across publications. A tutorial for this package is available on GitHub pages <https://docs.ropensci.org/lingtypology/> and package vignette. Maps created by this package can be used both for the investigation and linguistic teaching. In addition, package provides an ability to download data from typological databases such as WALS, AUTOTYP and some others and to create your own database website.
Estimate the slope and intercept of a bivariate linear relationship by calculating a posterior density that is invariant to interchange and scaling of the coordinates.
An implementation of algorithms described in Jewell and Witten (2017) <arXiv:1703.08644>.
Probabilistic record linkage without direct identifiers using only diagnosis codes. Method is detailed in: Hejblum, Weber, Liao, Palmer, Churchill, Szolovits, Murphy, Kohane & Cai (2019) <doi: 10.1038/sdata.2018.298> ; Zhang, Hejblum, Weber, Palmer, Churchill, Szolovits, Murphy, Liao, Kohane & Cai (2021) <doi: 10.1093/jamia/ocab187>.
Create and use data frame labels for data frame objects (frame labels), their columns (name labels), and individual values of a column (value labels). Value labels include one-to-one and many-to-one labels for nominal and ordinal variables, as well as numerical range-based value labels for continuous variables. Convert value-labeled variables so each value is replaced by its corresponding value label. Add values-converted-to-labels columns to a value-labeled data frame while preserving parent columns. Filter and subset a value-labeled data frame using labels, while returning results in terms of values. Overlay labels in place of values in common R commands to increase interpretability. Generate tables of value frequencies, with categories expressed as raw values or as labels. Access data frames that show value-to-label mappings for easy reference.
Routines for fitting Logic Regression models. Logic Regression is described in Ruczinski, Kooperberg, and LeBlanc (2003) <DOI:10.1198/1061860032238>. Monte Carlo Logic Regression is described in and Kooperberg and Ruczinski (2005) <DOI:10.1002/gepi.20042>.