_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bolasso 0.4.0
Propagated dependencies: r-tibble@3.3.0 r-progressr@0.18.0 r-matrix@1.7-4 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-generics@0.1.4 r-gamlr@1.13-8 r-future-apply@1.20.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://www.dmolitor.com/bolasso/
Licenses: Expat
Build system: r
Synopsis: Model Consistent Lasso Estimation Through the Bootstrap
Description:

This package implements the bolasso algorithm for consistent variable selection and estimation accuracy. Includes support for many parallel backends via the future package. For details see: Bach (2008), Bolasso: model consistent Lasso estimation through the bootstrap', <doi:10.48550/arXiv.0804.1302>.

r-bigsparser 0.7.3
Propagated dependencies: r-rmio@0.4.0 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-matrix@1.7-4 r-bigassertr@0.1.7
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/privefl/bigsparser
Licenses: GPL 3
Build system: r
Synopsis: Sparse Matrix Format with Data on Disk
Description:

Provide a sparse matrix format with data stored on disk, to be used in both R and C++. This is intended for more efficient use of sparse data in C++ and also when parallelizing, since data on disk does not need copying. Only a limited number of features will be implemented. For now, conversion can be performed from a dgCMatrix or a dsCMatrix from R package Matrix'. A new compact format is also now available.

r-biascorrector 0.2.3
Propagated dependencies: r-shinyjs@2.1.0 r-shinydashboard@0.7.3 r-shiny@1.11.1 r-rbiascorrection@0.3.5 r-magrittr@2.0.4 r-dt@0.34.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/kapsner/BiasCorrector
Licenses: GPL 3
Build system: r
Synopsis: GUI to Correct Measurement Bias in DNA Methylation Analyses
Description:

This package provides a GUI to correct measurement bias in DNA methylation analyses. The BiasCorrector package just wraps the functions implemented in the R package rBiasCorrection into a shiny web application in order to make them more easily accessible. Publication: Kapsner et al. (2021) <doi:10.1002/ijc.33681>.

r-bayesianpower 0.2.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesianPower
Licenses: LGPL 3
Build system: r
Synopsis: Sample Size and Power for Comparing Inequality Constrained Hypotheses
Description:

This package provides a collection of methods to determine the required sample size for the evaluation of inequality constrained hypotheses by means of a Bayes factor. Alternatively, for a given sample size, the unconditional error probabilities or the expected conditional error probabilities can be determined. Additional material on the methods in this package is available in Klaassen, F., Hoijtink, H. & Gu, X. (2019) <doi:10.31219/osf.io/d5kf3>.

r-blrm 1.0-2
Propagated dependencies: r-shiny@1.11.1 r-rjags@4-17 r-reshape2@1.4.5 r-openxlsx@4.2.8.1 r-mvtnorm@1.3-3 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=blrm
Licenses: LGPL 2.0+
Build system: r
Synopsis: Dose Escalation Design in Phase I Oncology Trial Using Bayesian Logistic Regression Modeling
Description:

Design dose escalation using Bayesian logistic regression modeling in Phase I oncology trial.

r-biolink 0.1.8
Propagated dependencies: r-xml2@1.5.0 r-rmysql@0.11.1 r-rentrez@1.2.4 r-memoise@2.0.1 r-glue@1.8.0 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=biolink
Licenses: Expat
Build system: r
Synopsis: Create Hyperlinks to Biological Databases and Resources
Description:

Generate urls and hyperlinks to commonly used biological databases and resources based on standard identifiers. This is primarily useful when writing dynamic reports that reference things like gene symbols in text or tables, allowing you to, for example, convert gene identifiers to hyperlinks pointing to their entry in the NCBI Gene database. Currently supports NCBI Gene, PubMed', Gene Ontology, KEGG', CRAN and Bioconductor.

r-brotli 1.3.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://jeroen.r-universe.dev/brotli
Licenses: Expat
Build system: r
Synopsis: Compression Format Optimized for the Web
Description:

This package provides a lossless compressed data format that uses a combination of the LZ77 algorithm and Huffman coding <https://www.rfc-editor.org/rfc/rfc7932>. Brotli is similar in speed to deflate (gzip) but offers more dense compression.

r-blr 1.6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BLR
Licenses: GPL 2
Build system: r
Synopsis: Bayesian Linear Regression
Description:

Bayesian Linear Regression.

r-bayesgp 0.1.3
Propagated dependencies: r-tmbstan@1.0.91 r-tmb@1.9.18 r-sfsmisc@1.1-23 r-rstan@2.32.7 r-rcppeigen@0.3.4.0.2 r-numderiv@2016.8-1.1 r-matrix@1.7-4 r-laplacesdemon@16.1.6 r-fda@6.3.0 r-aghq@0.4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesGP
Licenses: GPL 3+
Build system: r
Synopsis: Efficient Implementation of Gaussian Process in Bayesian Hierarchical Models
Description:

This package implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.

r-bayeseo 0.2.2
Propagated dependencies: r-yaml@2.3.10 r-tmap@4.2 r-tidyr@1.3.1 r-tibble@3.3.0 r-terra@1.8-86 r-stars@0.6-8 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-purrr@1.2.0 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/e-sensing/bayesEO/
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Smoothing of Remote Sensing Image Classification
Description:

This package provides a Bayesian smoothing method for post-processing of remote sensing image classification which refines the labelling in a classified image in order to enhance its classification accuracy. Combines pixel-based classification methods with a spatial post-processing method to remove outliers and misclassified pixels.

r-buildmer 2.12
Propagated dependencies: r-reformulas@0.4.2 r-nlme@3.1-168 r-mgcv@1.9-4 r-lme4@1.1-37
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=buildmer
Licenses: FSDG-compatible
Build system: r
Synopsis: Stepwise Elimination and Term Reordering for Mixed-Effects Regression
Description:

Finds the largest possible regression model that will still converge for various types of regression analyses (including mixed models and generalized additive models) and then optionally performs stepwise elimination similar to the forward and backward effect-selection methods in SAS, based on the change in log-likelihood or its significance, Akaike's Information Criterion, the Bayesian Information Criterion, the explained deviance, or the F-test of the change in R².

r-boostrq 1.0.0
Propagated dependencies: r-stabs@0.6-4 r-quantreg@6.1 r-mboost@2.9-11 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/stefanlinner/boostrq
Licenses: GPL 2+
Build system: r
Synopsis: Boosting Regression Quantiles
Description:

Boosting Regression Quantiles is a component-wise boosting algorithm, that embeds all boosting steps in the well-established framework of quantile regression. It is initialized with the corresponding quantile, uses a quantile-specific learning rate, and uses quantile regression as its base learner. The package implements this algorithm and allows cross-validation and stability selection.

r-boodd 0.1
Propagated dependencies: r-tseries@0.10-58 r-timeseries@4041.111 r-timedate@4051.111 r-geor@1.9-6 r-fgarch@4052.93 r-fbasics@4041.97
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=boodd
Licenses: GPL 2+
Build system: r
Synopsis: Functions for the Book "Bootstrap for Dependent Data, with an R Package"
Description:

Companion package, functions, data sets, examples for the book Patrice Bertail and Anna Dudek (2025), Bootstrap for Dependent Data, with an R package (by Bernard Desgraupes and Karolina Marek) - submitted. Kreiss, J.-P. and Paparoditis, E. (2003) <doi:10.1214/aos/1074290332> Politis, D.N., and White, H. (2004) <doi:10.1081/ETC-120028836> Patton, A., Politis, D.N., and White, H. (2009) <doi:10.1080/07474930802459016> Tsybakov, A. B. (2018) <doi:10.1007/b13794> Bickel, P., and Sakov, A. (2008) <doi:10.1214/18-AOS1803> Götze, F. and RaÄ kauskas, A. (2001) <doi:10.1214/lnms/1215090074> Politis, D. N., Romano, J. P., & Wolf, M. (1999, ISBN:978-0-387-98854-2) Carlstein E. (1986) <doi:10.1214/aos/1176350057> Künsch, H. (1989) <doi:10.1214/aos/1176347265> Liu, R. and Singh, K. (1992) <https://www.stat.purdue.edu/docs/research/tech-reports/1991/tr91-07.pdf> Politis, D.N. and Romano, J.P. (1994) <doi:10.1080/01621459.1994.10476870> Politis, D.N. and Romano, J.P. (1992) <https://www.stat.purdue.edu/docs/research/tech-reports/1991/tr91-07.pdf> Patrice Bertail, Anna E. Dudek. (2022) <doi:10.3150/23-BEJ1683> Dudek, A.E., LeÅ kow, J., Paparoditis, E. and Politis, D. (2014a) <https://ideas.repec.org/a/bla/jtsera/v35y2014i2p89-114.html> Beran, R. (1997) <doi:10.1023/A:1003114420352> B. Efron, and Tibshirani, R. (1993, ISBN:9780429246593) Bickel, P. J., Götze, F. and van Zwet, W. R. (1997) <doi:10.1007/978-1-4614-1314-1_17> A. C. Davison, D. Hinkley (1997) <doi:10.2307/1271471> Falk, M., & Reiss, R. D. (1989) <doi:10.1007/BF00354758> Lahiri, S. N. (2003) <doi:10.1007/978-1-4757-3803-2> Shimizu, K. .(2017) <doi:10.1007/978-3-8348-9778-7> Park, J.Y. (2003) <doi:10.1111/1468-0262.00471> Kirch, C. and Politis, D. N. (2011) <doi:10.48550/arXiv.1211.4732> Bertail, P. and Dudek, A.E. (2024) <doi:10.3150/23-BEJ1683> Dudek, A. E. (2015) <doi:10.1007/s00184-014-0505-9> Dudek, A. E. (2018) <doi:10.1080/10485252.2017.1404060> Bertail, P., Clémençon, S. (2006a) <https://ideas.repec.org/p/crs/wpaper/2004-47.html> Bertail, P. and Clémençon, S. (2006, ISBN:978-0-387-36062-1) RaduloviÄ , D. (2006) <doi:10.1007/BF02603005> Bertail, P. Politis, D. N. Rhomari, N. (2000) <doi:10.1080/02331880008802701> Nordman, D.J. Lahiri, S.N.(2004) <doi:10.1214/009053604000000779> Politis, D.N. Romano, J.P. (1993) <doi:10.1006/jmva.1993.1085> Hurvich, C. M. and Zeger, S. L. (1987, ISBN:978-1-4612-0099-4) Bertail, P. and Dudek, A. (2021) <doi:10.1214/20-EJS1787> Bertail, P., Clémençon, S. and Tressou, J. (2015) <doi:10.1111/jtsa.12105> Asmussen, S. (1987) <doi:10.1007/978-3-662-11657-9> Efron, B. (1979) <doi:10.1214/aos/1176344552> Gray, H., Schucany, W. and Watkins, T. (1972) <doi:10.2307/2335521> Quenouille, M.H. (1949) <doi:10.1111/j.2517-6161.1949.tb00023.x> Quenouille, M. H. (1956) <doi:10.2307/2332914> Prakasa Rao, B. L. S. and Kulperger, R. J. (1989) <https://www.jstor.org/stable/25050735> Rajarshi, M.B. (1990) <doi:10.1007/BF00050835> Dudek, A.E. Maiz, S. and Elbadaoui, M. (2014) <doi:10.1016/j.sigpro.2014.04.022> Beran R. (1986) <doi:10.1214/aos/1176349847> Maritz, J. S. and Jarrett, R. G. (1978) <doi:10.2307/2286545> Bertail, P., Politis, D., Romano, J. (1999) <doi:10.2307/2670177> Bertail, P. and Clémençon, S. (2006b) <doi:10.1007/0-387-36062-X_1> RaduloviÄ , D. (2004) <doi:10.1007/BF02603005> Hurd, H.L., Miamee, A.G. (2007) <doi:10.1002/9780470182833> Bühlmann, P. (1997) <doi:10.2307/3318584> Choi, E., Hall, P. (2000) <doi:10.1111/1467-9868.00244> Efron, B., Tibshirani, R. (1993, ISBN:9780429246593) Bertail, P., Clémençon, S. and Tressou, J. (2009) <doi:10.1007/s10687-009-0081-y> Bertail, P., Medina-Garay, A., De Lima-Medina, F. and Jales, I. (2024) <doi:10.1080/02331888.2024.2344670>.

r-bayesianinference 0.0.1
Dependencies: python@3.11.14
Propagated dependencies: r-reticulate@1.44.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesianInference
Licenses: GPL 3+
Build system: r
Synopsis: Bayesian Inference
Description:

Beta version of Bayesian Inference (BI) using python and BI. It aims to unify the modeling experience by providing an intuitive model-building syntax together with the flexibility of low-level abstraction coding. It also includes pre-built functions for high-level abstraction and supports hardware-accelerated computation for improved scalability, including parallelization, vectorization, and execution on CPU, GPU, or TPU.

r-blosc 0.1.2
Dependencies: zlib@1.3.1
Propagated dependencies: r-cpp11@0.5.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://pepijn-devries.github.io/blosc/
Licenses: GPL 3+
Build system: r
Synopsis: Compress and Decompress Data Using the 'BLOSC' Library
Description:

Arrays of structured data types can require large volumes of disk space to store. Blosc is a library that provides a fast and efficient way to compress such data. It is often applied in storage of n-dimensional arrays, such as in the case of the geo-spatial zarr file format. This package can be used to compress and decompress data using Blosc'.

r-beadplexr 0.5.0
Propagated dependencies: r-yaml@2.3.10 r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-purrr@1.2.0 r-mclust@6.1.2 r-ggplot2@4.0.1 r-fpc@2.2-13 r-drc@3.0-1 r-dplyr@1.1.4 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://gitlab.com/ustervbo/beadplexr
Licenses: Expat
Build system: r
Synopsis: Analysis of Multiplex Cytometric Bead Assays
Description:

Reproducible and automated analysis of multiplex bead assays such as CBA (Morgan et al. 2004; <doi: 10.1016/j.clim.2003.11.017>), LEGENDplex (Yu et al. 2015; <doi: 10.1084/jem.20142318>), and MACSPlex (Miltenyi Biotec 2014; Application note: Data acquisition and analysis without the MACSQuant analyzer; <https://www.miltenyibiotec.com/upload/assets/IM0021608.PDF>). The package provides functions for streamlined reading of fcs files, and identification of bead clusters and analyte expression. The package eases the calculation of standard curves and the subsequent calculation of the analyte concentration.

r-bivariateleaflet 0.1.0
Propagated dependencies: r-sf@1.0-23 r-rlang@1.1.6 r-leaflet@2.2.3 r-htmltools@0.5.8.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bivariateLeaflet
Licenses: Expat
Build system: r
Synopsis: Create Bivariate Choropleth Maps with 'Leaflet'
Description:

This package creates bivariate choropleth maps using Leaflet'. This package provides tools for visualizing the relationship between two variables through a color matrix representation on an interactive map.

r-bsam 1.1.3
Dependencies: jags@4.3.1
Propagated dependencies: r-tibble@3.3.0 r-sp@2.2-0 r-rworldxtra@1.01 r-rjags@4-17 r-mvtnorm@1.3-3 r-msm@1.8.2 r-lubridate@1.9.4 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: <https://github.com/ianjonsen/bsam>
Licenses: GPL 2
Build system: r
Synopsis: Bayesian State-Space Models for Animal Movement
Description:

This package provides tools to fit Bayesian state-space models to animal tracking data. Models are provided for location filtering, location filtering and behavioural state estimation, and their hierarchical versions. The models are primarily intended for fitting to ARGOS satellite tracking data but options exist to fit to other tracking data types. For Global Positioning System data, consider the moveHMM package. Simplified Markov Chain Monte Carlo convergence diagnostic plotting is provided but users are encouraged to explore tools available in packages such as coda and boa'.

r-biplotez 2.2
Propagated dependencies: r-withr@3.0.2 r-plotrix@3.8-13
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=biplotEZ
Licenses: Expat
Build system: r
Synopsis: EZ-to-Use Biplots
Description:

This package provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA), canonical variate analysis (CVA) and simple correspondence analysis (CA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.

r-bispdep 1.0-2
Propagated dependencies: r-spdep@1.4-1 r-spdata@2.3.4 r-spatialreg@1.4-2 r-sp@2.2-0 r-sf@1.0-23 r-rcolorbrewer@1.1-3 r-ggplot2@4.0.1 r-combinat@0.0-8 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/carlosm77/bispdep
Licenses: GPL 2+
Build system: r
Synopsis: Statistical Tools for Bivariate Spatial Dependence Analysis
Description:

This package provides a collection of functions to test spatial autocorrelation between variables, including Moran I, Geary C and Getis G together with scatter plots, functions for mapping and identifying clusters and outliers, functions associated with the moments of the previous statistics that will allow testing whether there is bivariate spatial autocorrelation, and a function that allows identifying (visualizing neighbours) on the map, the neighbors of any region once the scheme of the spatial weights matrix has been established.

r-bayeslca 1.9
Propagated dependencies: r-nlme@3.1-168 r-mcmcpack@1.7-1 r-fields@17.1 r-e1071@1.7-16 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesLCA
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Latent Class Analysis
Description:

Bayesian Latent Class Analysis using several different methods.

r-bayesmortalityplus 1.0.0
Propagated dependencies: r-tidyr@1.3.1 r-scales@1.4.0 r-progress@1.2.3 r-mvtnorm@1.3-3 r-mass@7.3-65 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesMortalityPlus
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Mortality Modelling
Description:

Fit Bayesian graduation mortality using the Heligman-Pollard model, as seen in Heligman, L., & Pollard, J. H. (1980) <doi:10.1017/S0020268100040257> and Dellaportas, Petros, et al. (2001) <doi:10.1111/1467-985X.00202>, and dynamic linear model (Campagnoli, P., Petris, G., and Petrone, S. (2009) <doi:10.1007/b135794_2>). While Heligman-Pollard has parameters with a straightforward interpretation yielding some rich analysis, the dynamic linear model provides a very flexible adjustment of the mortality curves by controlling the discount factor value. Closing methods for both Heligman-Pollard and dynamic linear model were also implemented according to Dodd, Erengul, et al. (2018) <https://www.jstor.org/stable/48547511>. The Bayesian Lee-Carter model is also implemented to fit historical mortality tables time series to predict the mortality in the following years and to do improvement analysis, as seen in Lee, R. D., & Carter, L. R. (1992) <doi:10.1080/01621459.1992.10475265> and Pedroza, C. (2006) <doi:10.1093/biostatistics/kxj024>. Journal publication available at <doi:10.18637/jss.v113.i09>.

r-benthos 2.0-0
Propagated dependencies: r-tidyselect@1.2.1 r-tibble@3.3.0 r-readr@2.1.6 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=benthos
Licenses: GPL 3+
Build system: r
Synopsis: Marine Benthic Ecosystem Analysis
Description:

Preprocessing tools and biodiversity measures (species abundance, species richness, population heterogeneity and sensitivity) for analysing marine benthic data. See Van Loon et al. (2015) <doi:10.1016/j.seares.2015.05.002> for an application of these tools.

r-bayesianlasso 0.3.6
Propagated dependencies: r-rcppnumerical@0.6-0 r-rcppeigen@0.3.4.0.2 r-rcppclock@1.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://garthtarr.github.io/BayesianLasso/
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Lasso Regression and Tools for the Lasso Distribution
Description:

This package implements Bayesian Lasso regression using efficient Gibbs sampling algorithms, including modified versions of the Hans and Parkâ Casella (PC) samplers. Includes functions for working with the Lasso distribution, such as its density, cumulative distribution, quantile, and random generation functions, along with moment calculations. Also includes a function to compute the Mills ratio. Designed for sparse linear models and suitable for high-dimensional regression problems.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283