Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements Cumulative Sum (CUSUM) control charts specifically designed for monitoring processes following a Gamma distribution. Provides functions to estimate distribution parameters, simulate control limits, and apply cautious learning schemes for adaptive thresholding. It supports upward and downward monitoring with guaranteed performance evaluated via Monte Carlo simulations. It is useful for quality control applications in industries where data follows a Gamma distribution. Methods are based on Madrid-Alvarez et al. (2024) <doi:10.1002/qre.3464> and Madrid-Alvarez et al. (2024) <doi:10.1080/08982112.2024.2440368>.
This package provides functions for normalizing standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" (Netta Mendelson Cohen, Omer Schwartzman, Ram Jaschek, Aviezer Lifshitz, Michael Hoichman, Ran Balicer, Liran I. Shlush, Gabi Barbash & Amos Tanay, <doi:10.1038/s41591-021-01468-6>). Allows users to easily obtain normalized values for standard lab results, and to visualize their distributions. See more at <https://tanaylab.weizmann.ac.il/labs/>.
Data files and a few functions used in the book Linear Models and Regression with R: An Integrated Approach by Debasis Sengupta and Sreenivas Rao Jammalamadaka (2019).
This package provides a flexible and easy-to use interface for the soil vegetation atmosphere transport (SVAT) model LWF-BROOK90, written in Fortran. The model simulates daily transpiration, interception, soil and snow evaporation, streamflow and soil water fluxes through a soil profile covered with vegetation, as described in Hammel & Kennel (2001, ISBN:978-3-933506-16-0) and Federer et al. (2003) <doi:10.1175/1525-7541(2003)004%3C1276:SOAETS%3E2.0.CO;2>. A set of high-level functions for model set up, execution and parallelization provides easy access to plot-level SVAT simulations, as well as multi-run and large-scale applications.
Wavelet-based methods for testing stationarity and quadtree segmenting of images, see Taylor et al (2014) <doi:10.1080/00401706.2013.823890>.
These functions take a gene expression value matrix, a primary covariate vector, an additional known covariates matrix. A two stage analysis is applied to counter the effects of latent variables on the rankings of hypotheses. The estimation and adjustment of latent effects are proposed by Sun, Zhang and Owen (2011). "leapp" is developed in the context of microarray experiments, but may be used as a general tool for high throughput data sets where dependence may be involved.
This package provides a static library for Imath (see <https://github.com/AcademySoftwareFoundation/Imath>), a library for functions and data types common in computer graphics applications, including a 16-bit floating-point type.
To decompose symmetric matrices such as brain connectivity matrices so that one can extract sparse latent component matrices and also estimate mixing coefficients, a blind source separation (BSS) method named LOCUS was proposed in Wang and Guo (2023) <arXiv:2008.08915>. For brain connectivity matrices, the outputs correspond to sparse latent connectivity traits and individual-level trait loadings.
Estimate model parameters to determine whether two compounds have synergy, antagonism, or Loewe's Additivity.
Efficient Frequentist profiling and Bayesian marginalization of parameters for which the conditional likelihood is that of a multivariate linear regression model. Arbitrary inter-observation error correlations are supported, with optimized calculations provided for independent-heteroskedastic and stationary dependence structures.
Interactive visualization of effects, response functions and marginal effects for different kinds of regression models. In this version linear regression models, generalized linear models, generalized additive models and linear mixed-effects models are supported. Major features are the interactive approach and the handling of the effects of categorical covariates: if two or more factors are used as covariates every combination of the levels of each factor is treated separately. The automatic calculation of marginal effects and a number of possibilities to customize the graphical output are useful features as well.
This package contains a set of functions to create data libraries, generate data dictionaries, and simulate a data step. The libname() function will load a directory of data into a library in one line of code. The dictionary() function will generate data dictionaries for individual data frames or an entire library. And the datestep() function will perform row-by-row data processing.
This package provides sf data for Chinese provinces and cities, methods for plotting shape maps of Chinese provinces and cities, Convert Coordinates Between Different Systems, and a layer for leaflet with Gaode tiles. It is designed to facilitate geographical data visualization in China.
Adds smoothing spline modelling capability to nlme. Fits smoothing spline terms in Gaussian linear and nonlinear mixed-effects models.
This package contains a collection of useful functions for basic data computation and manipulation, wrapper functions for generating ggplot2 graphics, including statistical model diagnostic plots, methods for computing statistical models quality measures (such as AIC, BIC, r squared, root mean squared error) and general utilities.
This package provides a system for fitting Logistic Curve by Rhodes Method. Method for fitting logistic curve by Rhodes Method is described in A.M.Gun,M.K.Gupta and B.Dasgupta(2019,ISBN:81-87567-81-3).
Bootstrap routines for nested linear mixed effects models fit using either lme4 or nlme'. The provided bootstrap() function implements the parametric, residual, cases, random effect block (REB), and wild bootstrap procedures. An overview of these procedures can be found in Van der Leeden et al. (2008) <doi: 10.1007/978-0-387-73186-5_11>, Carpenter, Goldstein & Rasbash (2003) <doi: 10.1111/1467-9876.00415>, and Chambers & Chandra (2013) <doi: 10.1080/10618600.2012.681216>.
Access to the Greek New Testament (27 books) and the Old Testament (39 books) and allow users to do textual analysis on the data. The New and Old Testament have been provided in their original languages, Greek and Hebrew, respectively. Additionally, the Revised American Standard Bible is also provided for users who'd rather use a wordâ forâ word modern English translation.
This package provides a bunch of algorithms based on linear programming for estimating, under the homogeneity hypothesis, RxC ecological contingency tables (or vote transition matrices) using mainly aggregate data (from voting units). References: Pavà a and Romero (2024) <doi:10.1177/00491241221092725>. Pavà a and Romero (2024) <doi:10.1093/jrsssa/qnae013>. Pavà a (2023) <doi:10.1007/s43545-023-00658-y>. Pavà a (2024) <doi:10.1080/0022250X.2024.2423943>. Pavà a (2024) <doi:10.1177/07591063241277064>. Pavà a and Penadés (2024). A bottom-up approach for ecological inference. Romero, Pavà a, Martà n and Romero (2020) <doi:10.1080/02664763.2020.1804842>. Acknowledgements: The authors wish to thank Consellerà a de Educación, Cultura, Universidades y Empleo, Generalitat Valenciana (grants AICO/2021/257, CIAICO/2023/031) and MICIU/AEI/10.13039/501100011033/FEDER, UE (grant PID2021-128228NB-I00) for supporting this research.
Managing and exploring parameter estimation results derived from Maximum Likelihood Estimation (MLE) using the likelihood package. It provides functions for organizing, visualizing, and summarizing MLE outcomes, streamlining statistical analysis workflows. By improving interpretation and facilitating model evaluation, it helps users gain deeper insights into parameter estimation and model fitting, making MLE result exploration more efficient and accessible. See Goffe et al. (1994) <doi:10.1016/0304-4076(94)90038-8> for details on MLE, and Canham and Uriarte (2006) <doi:10.1890/04-0657> for application of MLE using likelihood'.
Lazy read for drawings. A dplyr back end for data sources supported by GDAL vector drivers, that allows working with local or remote sources as if they are in-memory data frames. Basic features works with any drawing format ('GDAL vector data source') supported by the sf package.
This package provides tools for estimation and inference of conditional densities, derivatives and functions. This is the companion software for Cattaneo, Chandak, Jansson and Ma (2024) <doi:10.3150/23-BEJ1711>.
The Length-Biased Power Garima distribution for computes the probability density, the cumulative density distribution and the quantile function of the distribution, and generates sample values with random variables based on Kittipong and Sirinapa(2021)<DOI: 10.14456/sjst-psu.2021.89>.
Sparklines are small plots (about one line of text high), made popular by Edward Tufte. This package is the interface from R to the LaTeX package sparklines by Andreas Loeffer and Dan Luecking (<http://www.ctan.org/pkg/sparklines>). It can work with Sweave or knitr or other engines that produce TeX. The package can be used to plot vectors, matrices, data frames, time series (in ts or zoo format).