Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Supplies a LazyData facility for packages which have data sets but do not provide LazyData: true. A single function is is included, requireData, which is a drop-in replacement for base::require, but carrying the additional functionality. By default, it suppresses package startup messages as well. See argument reallyQuitely'.
Converts table-like objects to stand-alone PDF or PNG. Can be used to embed tables and arbitrary content in PDF or Word documents. Provides a low-level R interface for creating LaTeX code, e.g. command() and a high-level interface for creating PDF documents, e.g. as.pdf.data.frame(). Extensive customization is available via mid-level functions, e.g. as.tabular(). See also package?latexpdf'. Support for PNG is experimental; see as.png.data.frame'. Adapted from metrumrg <https://r-forge.r-project.org/R/?group_id=1215>. Requires a compatible installation of pdflatex', e.g. <https://miktex.org/>.
Companion R package for the course "Statistical analysis of correlated and repeated measurements for health science researchers" taught by the section of Biostatistics of the University of Copenhagen. It implements linear mixed models where the model for the variance-covariance of the residuals is specified via patterns (compound symmetry, toeplitz, unstructured, ...). Statistical inference for mean, variance, and correlation parameters is performed based on the observed information and a Satterthwaite approximation of the degrees of freedom. Normalized residuals are provided to assess model misspecification. Statistical inference can be performed for arbitrary linear or non-linear combination(s) of model coefficients. Predictions can be computed conditional to covariates only or also to outcome values.
Auxiliary package for better/faster analytics, visualization, data mining, and machine learning tasks. With a wide variety of family functions, like Machine Learning, Data Wrangling, Marketing Mix Modeling (Robyn), Exploratory, API, and Scrapper, it helps the analyst or data scientist to get quick and robust results, without the need of repetitive coding or advanced R programming skills.
This package performs Levins loop analysis of qualitatively-specified complex causal systems. Loop analysis makes qualitative predictions of variable change in a system of causally interdependent variables, where "qualitative" means direct causal relationships and indirect causal effects are coded as sign only (i.e. increases, decreases, no change, and ambiguous). This implementation includes output support for graphs in .dot file format for use with visualization software such as graphviz (<https://graphviz.org>). LoopAnalyst provides tools for the construction and output of community matrices, computation and output of community effect matrices, tables of correlations, adjoint, absolute feedback, weighted feedback and weighted prediction matrices, change in life expectancy matrices, and feedback, path and loop enumeration tools.
Fast binning of multiple variables using parallel processing. A summary of all the variables binned is generated which provides the information value, entropy, an indicator of whether the variable follows a monotonic trend or not, etc. It supports rebinning of variables to force a monotonic trend as well as manual binning based on pre specified cuts. The cut points of the bins are based on conditional inference trees as implemented in the partykit package. The conditional inference framework is described by Hothorn T, Hornik K, Zeileis A (2006) <doi:10.1198/106186006X133933>.
Flexible functions that use lme4 as computational engine for fitting models used in Genomic Selection (GS). GS is a technology used for genetic improvement, and it has many advantages over phenotype-based selection. There are several statistical models that adequately approach the statistical challenges in GS, such as in linear mixed models (LMMs). The lme4 is the standard package for fitting linear and generalized LMMs in the R-package, but its use for genetic analysis is limited because it does not allow the correlation between individuals or groups of individuals to be defined. The lme4GS package is focused on fitting LMMs with covariance structures defined by the user, bandwidth selection, and genomic prediction. The new package is focused on genomic prediction of the models used in GS and can fit LMMs using different variance-covariance matrices. Several examples of GS models are presented using this package as well as the analysis using real data. For more details see Caamal-Pat et.al. (2021) <doi:10.3389/fgene.2021.680569>.
This package contains different algorithms and construction methods for optimal Latin hypercube designs (LHDs) with flexible sizes. Our package is comprehensive since it is capable of generating maximin distance LHDs, maximum projection LHDs, and orthogonal and nearly orthogonal LHDs. Detailed comparisons and summary of all the algorithms and construction methods in this package can be found at Hongzhi Wang, Qian Xiao and Abhyuday Mandal (2021) <doi:10.48550/arXiv.2010.09154>. This package is particularly useful in the area of Design and Analysis of Experiments (DAE). More specifically, design of computer experiments.
Generates the Langa-Weir classification of cognitive function for the 2022 Health and Retirement Study (HRS) cognition data. It is particularly useful for researchers studying cognitive aging who wish to work with the most recent release of HRS data. The package provides user-friendly functions for data preprocessing, scoring, and classification allowing users to easily apply the Langa-Weir classification system. For details regarding the; HRS <https://hrsdata.isr.umich.edu/> and Langa-Weir classifications <https://hrsdata.isr.umich.edu/data-products/langa-weir-classification-cognitive-function-1995-2020>.
We provide a solution for performing permutation tests on linear and mixed linear regression models. It allows users to obtain accurate p-values without making distributional assumptions about the data. By generating a null distribution of the test statistics through repeated permutations of the response variable, permutation tests provide a powerful alternative to traditional parameter tests (Holt et al. (2023) <doi:10.1007/s10683-023-09799-6>). In this early version, we focus on the permutation tests over observed t values of beta coefficients, i.e.original t values generated by parameter tests. After generating a null distribution of the test statistic through repeated permutations of the response variable, each observed t values would be compared to the null distribution to generate a p-value. To improve the efficiency,a stop criterion (Anscombe (1953) <doi:10.1111/j.2517-6161.1953.tb00121.x>) is adopted to force permutation to stop if the estimated standard deviation of the value falls below a fraction of the estimated p-value. By doing so, we avoid the need for massive calculations in exact permutation methods while still generating stable and accurate p-values.
This package provides likelihood functions as defined by Fisher (1922) <doi:10.1098/rsta.1922.0009> and a function that creates likelihood functions from density functions. The functions are meant to aid in education of likelihood based methods.
This package provides a shiny application to automate forward and back survey translation with optional reconciliation using large language models (LLMs). Supports OpenAI (GPT), Google Gemini, and Anthropic Claude models. It follows the TRAPD (Translation, Review, Adjudication, Pretesting, Documentation) framework and ISPOR (International Society for Pharmacoeconomics and Outcomes Research) recommendations. See Harkness et al. (2010) <doi:10.1002/9780470609927.ch7> and Wild et al. (2005) <doi:10.1111/j.1524-4733.2005.04054.x>.
Split your rmarkdown or quarto files by sections into a tibble: titles, text, chunks. Rebuild the file from the tibble.
Exact significance tests for a changepoint in linear or multiple linear regression. Confidence regions with exact coverage probabilities for the changepoint. Based on Knowles, Siegmund and Zhang (1991) <doi:10.1093/biomet/78.1.15>.
Convenient aliases for common ways of misspelling the base R function length(). These include every permutation of the final three letters.
This package provides R bindings to the llama.cpp library for running large language models. The package uses a lightweight architecture where the C++ backend library is downloaded at runtime rather than bundled with the package. Package features include text generation, reproducible generation, and parallel inference.
This package creates HTML strings to embed tables, images or graphs in pop-ups of interactive maps created with packages like leaflet or mapview'. Handles local images located on the file system or via remote URL. Handles graphs created with lattice or ggplot2 as well as interactive plots created with htmlwidgets'.
The log4r package is meant to provide a fast, lightweight, object-oriented approach to logging in R based on the widely-emulated log4j system and etymology.
Translates R help documentation on the fly by using a Large Language model of your choice. If you are using RStudio or Positron the translated help will appear in the help pane.
New empirical Bayes methods aiming at analyzing the association of single nucleotide polymorphisms (SNPs) to some particular disease are implemented in this package. The package uses local false discovery rate (LFDR) estimates of SNPs within a sample population defined as a "reference class" and discovers if SNPs are associated with the corresponding disease. Although SNPs are used throughout this document, other biological data such as protein data and other gene data can be used. Karimnezhad, Ali and Bickel, D. R. (2016) <http://hdl.handle.net/10393/34889>.
Implementation of the algorithm introduced in Shah, R. D. (2016) <https://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits, so the algorithm is very efficient.
Useful shiny production-ready modules and helpers such as login window and visualization tools.
Local Mean Decomposition is an iterative and self-adaptive approach for demodulating, processing, and analyzing multi-component amplitude modulated and frequency modulated signals. This R package is based on the approach suggested by Smith (2005) <doi:10.1098/rsif.2005.0058> and the Python library PyLMD'.
Plots empty Lexis grids, adds lifelines and highlights certain areas of the grid, like cohorts and age groups.