Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Several leaflet plugins are integrated, which are available as extension to the leaflet package.
Likelihood-based estimation of individual growth and sexual maturity models for organisms, usually fish and invertebrates. It includes methods for data organization, plotting standard exploratory and analytical plots, predictions.
Interpretable nonparametric modeling of longitudinal data using additive Gaussian process regression. Contains functionality for inferring covariate effects and assessing covariate relevances. Models are specified using a convenient formula syntax, and can include shared, group-specific, non-stationary, heterogeneous and temporally uncertain effects. Bayesian inference for model parameters is performed using Stan'. The modeling approach and methods are described in detail in Timonen et al. (2021) <doi:10.1093/bioinformatics/btab021>.
This package provides tools for creating and using lenses to simplify data manipulation. Lenses are composable getter/setter pairs for working with data in a purely functional way. Inspired by the Haskell library lens (Kmett, 2012) <https://hackage.haskell.org/package/lens>. For a fairly comprehensive (and highly technical) history of lenses please see the lens wiki <https://github.com/ekmett/lens/wiki/History-of-Lenses>.
Calculates Land Surface Temperature from Landsat band 10 and 11. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. Jimenez-Munoz JC, Cristobal J, Sobrino JA, et al (2009). <doi: 10.1109/TGRS.2008.2007125>. Land surface temperature retrieval from LANDSAT TM 5. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004). <doi:10.1016/j.rse.2004.02.003>. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Srivastava PK, Majumdar TJ, Bhattacharya AK (2009). <doi: 10.1016/j.asr.2009.01.023>. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Valor E (1996). <doi:10.1016/0034-4257(96)00039-9>. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Van de Griend AA, Owe M (1993). <doi:10.1080/01431169308904400>. Land Surface Temperature Retrieval from Landsat 8 TIRSâ Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Yu X, Guo X, Wu Z (2014). <doi:10.3390/rs6109829>. Calibration and Validation of land surface temperature for Landsat8-TIRS sensor. Land product validation and evolution. SkokoviÄ D, Sobrino JA, Jimenez-Munoz JC, Soria G, Julien Y, Mattar C, Cristóbal J. (2014).
This package provides classes and methods for spatially explicit land use change modelling in R.
This package provides a flexible approach, inspired by cosinor regression, for differential analysis of rhythmic transcriptome data. See Singer and Hughey (2018) <doi:10.1177/0748730418813785>.
Implementation of a theoretically supported alternative to k-nearest neighbors for functional data to solve problems of estimating unobserved segments of a partially observed functional data sample, functional classification and outlier detection. The approximating neighbor curves are piecewise functions built from a functional sample. Instead of a distance on a function space we use a locally defined distance function that satisfies stabilization criteria. The package allows the implementation of the methodology and the replication of the results in Elà as, A., Jiménez, R. and Yukich, J. (2020) <arXiv:2007.16059>.
The "Manual on Low-flow Estimation and Prediction" (Gustard & Demuth (2009, ISBN:978-92-63-11029-9)), published by the World Meteorological Organisation, gives a comprehensive summary on how to analyse stream flow data focusing on low-flows. This packages provides functions to compute the described statistics and produces plots similar to the ones in the manual.
Helper functions to build SQL statements for dbGetQuery or dbSendQuery under program control. They are intended to increase speed of coding and to reduce coding errors. Arguments are carefully checked, in particular SQL identifiers such as names of tables or columns. More patterns will be added as required.
Alternate font rendering is useful when rendering text to novel graphics outputs where modern font rendering is not available or where bespoke text positioning is required. Bitmap and vector fonts allow for custom layout and rendering using pixel coordinates and line drawing. Formatted text is created as a data.frame of pixel coordinates (for bitmap fonts) or stroke coordinates (for vector fonts). All text can be easily previewed as a matrix or raster image. A selection of fonts is included with this package.
Linear Liu regression coefficient's estimation and testing with different Liu related measures such as MSE, R-squared etc. REFERENCES i. Akdeniz and Kaciranlar (1995) <doi:10.1080/03610929508831585> ii. Druilhet and Mom (2008) <doi:10.1016/j.jmva.2006.06.011> iii. Imdadullah, Aslam, and Saima (2017) iv. Liu (1993) <doi:10.1080/03610929308831027> v. Liu (2001) <doi:10.1016/j.jspi.2010.05.030>.
This package contains functions to help create log files. The package aims to overcome the difficulty of the base R sink() command. The log_print() function will print to both the console and the file log, without interfering in other write operations.
New empirical Bayes methods aiming at analyzing the association of single nucleotide polymorphisms (SNPs) to some particular disease are implemented in this package. The package uses local false discovery rate (LFDR) estimates of SNPs within a sample population defined as a "reference class" and discovers if SNPs are associated with the corresponding disease. Although SNPs are used throughout this document, other biological data such as protein data and other gene data can be used. Karimnezhad, Ali and Bickel, D. R. (2016) <http://hdl.handle.net/10393/34889>.
This package provides an l1-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed graphs using l1-penalty. This algorithm is described with more details in the preprint C. Champion, M. Champion, M. Blazère, R. Burcelin and J.M. Loubes, "l1-spectral clustering algorithm: a spectral clustering method using l1-regularization" (2022).
Each function replaces multiple standard R functions. For example, two function calls, Read() and CountAll(), generate summary statistics for all variables in the data frame, plus histograms and bar charts. Other functions provide data aggregation via pivot tables; comprehensive regression, ANOVA, and t-test; visualizations including integrated Violin/Box/Scatter plot for a numerical variable, bar chart, histogram, box plot, density curves, calibrated power curve; reading multiple data formats with the same call; variable labels; time series with aggregation and forecasting; color themes; and Trellis (facet) graphics. Also includes a confirmatory factor analysis of multiple-indicator measurement models, pedagogical routines for data simulation (e.g., Central Limit Theorem), generation and rendering of regression instructions for interpretative output, and both interactive construction of visualizations and interactive visualizations with plotly.
This package provides a fast generalized edit distance and string alignment computation mainly for linguistic aims. As a generalization to the classic edit distance algorithms, the package allows users to define custom cost for every symbol's insertion, deletion, and substitution. The package also allows character combinations in any length to be seen as a single symbol which is very useful for International Phonetic Alphabet (IPA) transcriptions with diacritics. In addition to edit distance result, users can get detailed alignment information such as all possible alignment scenarios between two strings which is useful for testing, illustration or any further usage. Either the distance matrix or its long table form can be obtained and tools to do such conversions are provided. All functions in the package are implemented in C++ and the distance matrix computation is parallelized leveraging the RcppThread package.
Implementation of the three-step approach of (latent transition) cognitive diagnosis model (CDM) with covariates. This approach can be used for single time-point situations (cross-sectional data) and multiple time-point situations (longitudinal data) to investigate how the covariates are associated with attribute mastery. For multiple time-point situations, the three-step approach of latent transition CDM with covariates allows researchers to assess changes in attribute mastery status and to evaluate the covariate effects on both the initial states and transition probabilities over time using latent logistic regression. Because stepwise approaches often yield biased estimates, correction for classification error probabilities (CEPs) is considered in this approach. The three-step approach for latent transition CDM with covariates involves the following steps: (1) fitting a CDM to the response data without covariates at each time point separately, (2) assigning examinees to latent states at each time point and computing the associated CEPs, and (3) estimating the latent transition CDM with the known CEPs and computing the regression coefficients. The method was proposed in Liang et al. (2023) <doi:10.3102/10769986231163320> and demonstrated using mental health data in Liang et al. (in press; annotated R code and data utilized in this example are available in Mendeley data) <doi:10.17632/kpjp3gnwbt.1>.
This package contains 128 palettes from Color Lisa. All palettes are based on masterpieces from the worlds greatest artists. For more information, see <http://colorlisa.com/>.
This package produces high resolution, publication ready linkage maps and quantitative trait loci maps. Input can be output from R/qtl', simple text or comma delimited files. Output is currently a portable document file.
Obtain least-squares means for linear, generalized linear, and mixed models. Compute contrasts or linear functions of least-squares means, and comparisons of slopes. Plots and compact letter displays. Least-squares means were proposed in Harvey, W (1960) "Least-squares analysis of data with unequal subclass numbers", Tech Report ARS-20-8, USDA National Agricultural Library, and discussed further in Searle, Speed, and Milliken (1980) "Population marginal means in the linear model: An alternative to least squares means", The American Statistician 34(4), 216-221 <doi:10.1080/00031305.1980.10483031>. NOTE: lsmeans now relies primarily on code in the emmeans package. lsmeans will be archived in the near future.
Detect feedback loops (cycles, circuits) between species (nodes) in ordinary differential equation (ODE) models. Feedback loops are paths from a node to itself without visiting any other node twice, and they have important regulatory functions. Loops are reported with their order of participating nodes and their length, and whether the loop is a positive or a negative feedback loop. An upper limit of the number of feedback loops limits runtime (which scales with feedback loop count). Model parametrizations and values of the modelled variables are accounted for. Computation uses the characteristics of the Jacobian matrix as described e.g. in Thomas and Kaufman (2002) <doi:10.1016/s1631-0691(02)01452-x>. Input can be the Jacobian matrix of the ODE model or the ODE function definition; in the latter case, the Jacobian matrix is determined using numDeriv'. Graph-based algorithms from igraph are employed for path detection.
This package provides functions to estimate and visualize linear as well as nonlinear impulse responses based on local projections by Jordà (2005) <doi:10.1257/0002828053828518>. The methods and the package are explained in detail in Adämmer (2019) <doi:10.32614/RJ-2019-052>.
An effortless ndjson (newline-delimited JSON') logger, with two primary log-writing interfaces. It provides a set of wrappings for base R's message(), warning(), and stop() functions that maintain identical functionality, but also log the handler message to an ndjson log file. loggit also exports its internal loggit() function for powerful and configurable custom logging. No change in existing code is necessary to use this package, and should only require additions to fully leverage the power of the logging system. loggit also provides a log reader for reading an ndjson log file into a data frame, log rotation, and live echo of the ndjson log messages to terminal stdout for log capture by external systems (like containers). loggit is ideal for Shiny apps, data pipelines, modeling work flows, and more. Please see the vignettes for detailed example use cases.