Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements transfer learning methods for low-rank matrix estimation. These methods leverage similarity in the latent row and column spaces between the source and target populations to improve estimation in the target population. The methods include the LatEnt spAce-based tRaNsfer lEaRning (LEARNER) method and the direct projection LEARNER (D-LEARNER) method described by McGrath et al. (2024) <doi:10.48550/arXiv.2412.20605>.
This package provides functions for different purposes related to forest biometrics, including illustrative graphics, numerical computation, modeling height-diameter relationships, prediction of tree volumes, modelling of diameter distributions and estimation off stand density using ITD. Several empirical datasets are also included.
Conducts a cointegration test for high-dimensional vector autoregressions (VARs) of order k based on the large N,T asymptotics of Bykhovskaya and Gorin, 2022 (<doi:10.48550/arXiv.2202.07150>). The implemented test is a modification of the Johansen likelihood ratio test. In the absence of cointegration the test converges to the partial sum of the Airy-1 point process. This package contains simulated quantiles of the first ten partial sums of the Airy-1 point process that are precise up to the first three digits.
Estimate drift and diffusion functions from time series and generate synthetic time series from given drift and diffusion coefficients.
This package provides functions for normalizing standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" (Netta Mendelson Cohen, Omer Schwartzman, Ram Jaschek, Aviezer Lifshitz, Michael Hoichman, Ran Balicer, Liran I. Shlush, Gabi Barbash & Amos Tanay, <doi:10.1038/s41591-021-01468-6>). Allows users to easily obtain normalized values for standard lab results, and to visualize their distributions. See more at <https://tanaylab.weizmann.ac.il/labs/>.
This package performs the trimmed k-means clustering algorithm with lower memory use. It also provides a number of utility functions such as BIC calculations.
Print vectors (and data frames) of floating point numbers using a non-scientific format optimized for human readers. Vectors of numbers are rounded using significant digits, aligned at the decimal point, and all zeros trailing the decimal point are dropped. See: Wright (2016). Lucid: An R Package for Pretty-Printing Floating Point Numbers. In JSM Proceedings, Statistical Computing Section. Alexandria, VA: American Statistical Association. 2270-2279.
Without imposing stringent distributional assumptions or shape restrictions, nonparametric estimation has been popular in economics and other social sciences for counterfactual analysis, program evaluation, and policy recommendations. This package implements a novel density (and derivatives) estimator based on local polynomial regressions, documented in Cattaneo, Jansson and Ma (2022) <doi:10.18637/jss.v101.i02>: lpdensity() to construct local polynomial based density (and derivatives) estimator, and lpbwdensity() to perform data-driven bandwidth selection.
This package provides functions to estimate survival and a treatment effect using a landmark estimation approach.
It implements Expectation/Conditional Maximization Either (ECME) and rapidly converging algorithms as well as Bayesian inference for linear mixed models, which is described in Schafer, J.L. (1998) "Some improved procedures for linear mixed models". Dept. of Statistics, The Pennsylvania State University.
Create lipidome-wide heatmaps of statistics with the lipidomeR'. The lipidomeR provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the lipidomeR helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.
This package provides tools to create an interactive web-based visualization of a topic model that has been fit to a corpus of text data using Latent Dirichlet Allocation (LDA). Given the estimated parameters of the topic model, it computes various summary statistics as input to an interactive visualization built with D3.js that is accessed via a browser. The goal is to help users interpret the topics in their LDA topic model.
Analyze graph/network data using L1 centrality and prestige. Functions for deriving global, local, and group L1 centrality/prestige are provided. Routines for visual inspection of a graph/network are also provided. Details are in Kang and Oh (2025a) <doi:10.1080/01621459.2025.2520467>, Kang and Oh (2025b) <doi:10.1080/00031305.2025.2563730>, and Kang (2025) <doi:10.23170/snu.000000188358.11032.0001856>.
Modifying a load shape to match specific peak and load factor is a fundamental component for various power system planning and operation studies. This package is an efficient tool to modify a reference load shape while matching the desired peak and load factor. The package offers both linear and non-linear method, described in <https://rpubs.com/riazakhan94/load_shape_match_peak_energy>. The user can control the shape of the final load shape by regulating certain parameters. The package provides validation metrics for assessing the derived load shape in terms of preserving time series properties. It also offers powerful graphics, that allows the user to visually assess the derived load shape.
Implementation of LT-FH++, an extension of the liability threshold family history (LT-FH) model. LT-FH++ uses a Gibbs sampler for sampling from the truncated multivariate normal distribution and allows for flexible family structures. LT-FH++ was first described in Pedersen, Emil M., et al. (2022) <doi:10.1016/j.ajhg.2022.01.009> as an extension to LT-FH with more flexible family structures, and again as the age-dependent liability threshold (ADuLT) model Pedersen, Emil M., et al. (2023) <https://www.nature.com/articles/s41467-023-41210-z> as an alternative to traditional time-to-event genome-wide association studies, where family history was not considered.
Facilitates access to the Comparative Legislators Database (CLD). The CLD includes political, sociodemographic, career, online presence, public attention, and visual information for over 67,000 contemporary and historical politicians from 16 countries.
Allows you to read and change the state of LIFX smart light bulbs via the LIFX developer api <https://api.developer.lifx.com/>. Covers most LIFX api endpoints, including changing light color and brightness, selecting lights by id, group or location as well as activating effects.
Build powerful, linked-view dashboards in shiny applications. With a declarative, one-line setup, you can create bidirectional links between interactive components. When a user interacts with one element (e.g., clicking a map marker), all linked components (such as DT tables or other charts) instantly update. Supports leaflet maps, DT tables, plotly charts, and spatial data via sf objects out-of-the-box, with an extensible API for custom components.
This package provides a set of tools designed to enhance transparency and understanding of date-time manipulation functions from the lubridate package. It provides detailed feedback about the operations performed by lubridate functions, allowing users to better comprehend and debug their code. These insights serve as both a learning tool for newcomers and a debugging aid for programmers working with date-time data.
This package provides function for the l1-ball prior on high-dimensional regression. The main function, l1ball(), yields posterior samples for linear regression, as introduced by Xu and Duan (2020) <arXiv:2006.01340>.
This package provides a simple progress bar showing estimated remaining time. Multiple forecast methods and user defined forecast method for the remaining time are supported.
Plots path diagrams from models in lavaan using the plotting functionality from the DiagrammeR package. DiagrammeR provides nice path diagrams via Graphviz', and these functions make it easy to generate these diagrams from a lavaan path model without having to write the DOT language graph specification.
Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) <doi:10.1080/10705511.2017.1403287>, for item response theory models in Andersson, B., and Xin, T. (2021) <doi:10.3102/1076998620945199>, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) <doi:10.1016/j.csda.2023.107710>. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models.
This package provides tools for fast and accurate evaluation of skew stable distributions (CDF, PDF and quantile functions), random number generation, and parameter estimation. This is libstableR as per Royuela del Val, Simmross-Wattenberg, and Alberola López (2017) <doi:10.18637/jss.v078.i01> under a new maintainer.