Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The log4r package is meant to provide a fast, lightweight, object-oriented approach to logging in R based on the widely-emulated log4j system and etymology.
This package provides a static library for Imath (see <https://github.com/AcademySoftwareFoundation/Imath>), a library for functions and data types common in computer graphics applications, including a 16-bit floating-point type.
Estimates two-dimensional local wavelet spectra.
This package provides functions for different purposes related to forest biometrics, including illustrative graphics, numerical computation, modeling height-diameter relationships, prediction of tree volumes, modelling of diameter distributions and estimation off stand density using ITD. Several empirical datasets are also included.
The aim of the package is to create data objects which allow for accesses like x["test"] and x["test","test"].
This package provides functions implementing multivariate state space models for purposes of time series analysis and forecasting. The focus of the package is on multivariate models, such as Vector Exponential Smoothing, Vector ETS (Error-Trend-Seasonal model) etc. It currently includes Vector Exponential Smoothing (VES, de Silva et al., 2010, <doi:10.1177/1471082X0901000401>), Vector ETS (Svetunkov et al., 2023, <doi:10.1016/j.ejor.2022.04.040>) and simulation function for VES.
This package provides a framework for clustering longitudinal datasets in a standardized way. The package provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease. The akmedoids package is available from <https://github.com/MAnalytics/akmedoids>.
This package provides instrumental variable estimation of treatment effects when both the endogenous treatment and its instrument are binary. Applicable to both binary and continuous outcomes.
This package provides two methods of estimating income inequality statistics from binned income data, such as the income data provided in the Census. These methods use different interpolation techniques to infer the distribution of incomes within income bins. One method is an implementation of Jargowsky and Wheeler's mean-constrained integration over brackets (MCIB). The other method is based on a new technique, Lorenz interpolation, which estimates income inequality by constructing an interpolated Lorenz curve based on the binned income data. These methods can be used to estimate three income inequality measures: the Gini (the default measure returned), the Theil, and the Atkinson's index. Jargowsky and Wheeler (2018) <doi:10.1177/0081175018782579>.
Libreria di dati, scripts e funzioni che accompagna il libro "Ricerca sociale con R. Concetti e funzioni base per la ricerca sociale".
This package provides a collection of functions that calculate the log likelihood (support) for a range of statistical tests. Where possible the likelihood function and likelihood interval for the observed data are displayed. The evidential approach used here is based on the book "Likelihood" by A.W.F. Edwards (1992, ISBN-13 : 978-0801844430), "Statistical Evidence" by R. Royall (1997, ISBN-13 : 978-0412044113), S.N. Goodman & R. Royall (2011) <doi:10.2105/AJPH.78.12.1568>, "Understanding Psychology as a Science" by Z. Dienes (2008, ISBN-13 : 978-0230542310), S. Glover & P. Dixon <doi:10.3758/BF03196706> and others. This package accompanies "Evidence-Based Statistics" by P. Cahusac (2020, ISBN-13 : 978-1119549802) <doi:10.1002/9781119549833>.
This package provides a unified latent class modeling framework that encompasses both latent class analysis (LCA) and latent profile analysis (LPA), offering a one-stop solution for latent class modeling. It implements state-of-the-art parameter estimation methods, including the expectationâ maximization (EM) algorithm, neural network estimation (NNE; requires users to have Python and its dependent libraries installed on their computer), and integration with Mplus (requires users to have Mplus installed on their computer). In addition, it provides commonly used model fit indices such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC), as well as classification accuracy measures such as entropy. The package also includes fully functional likelihood ratio tests (LRT) and bootstrap likelihood ratio tests (BLRT) to facilitate model comparison, along with bootstrap-based and observed information matrix-based standard error estimation. Furthermore, it supports the standard three-step approach for LCA, LPA, and latent transition analysis (LTA) with covariates, enabling detailed covariate analysis. Finally, it includes several user-friendly auxiliary functions to enhance interactive usability.
Data sets for Chirok Han (2024, ISBN:979-11-303-1964-3, "Lectures on Econometrics"). Students, teachers, and self-learners will find the data sets essential for replicating the results in the book.
The proposed method aims at predicting the longitudinal mean response trajectory by a kernel-based estimator. The kernel estimator is constructed by imposing weights based on subject-wise similarity on L2 metric space between predictor trajectories as well as time proximity. Users could also perform variable selections to derive functional predictors with predictive significance by the proposed multiplicative model with multivariate Gaussian kernels.
Implementation of Locally Scaled Density Based Clustering (LSDBC) algorithm proposed by Bicici and Yuret (2007) <doi:10.1007/978-3-540-71618-1_82>. This package also contains some supporting functions such as betaCV() function and get_spectral() function.
This package provides easy access for sentiment lexicons for those who want to do text analysis in Portuguese texts. As of now, two Portuguese lexicons are available: SentiLex-PT02 and OpLexicon (v2.1 and v3.0).
The package converts R data onto input and data for LocalSolver, executes optimization and exposes optimization results as R data. LocalSolver (http://www.localsolver.com/) is an optimization engine developed by Innovation24 (http://www.innovation24.fr/). It is designed to solve large-scale mixed-variable non-convex optimization problems. The localsolver package is developed and maintained by WLOG Solutions (http://www.wlogsolutions.com/en/) in collaboration with Decision Support and Analysis Division at Warsaw School of Economics (http://www.sgh.waw.pl/en/).
This package provides tools for creating and using lenses to simplify data manipulation. Lenses are composable getter/setter pairs for working with data in a purely functional way. Inspired by the Haskell library lens (Kmett, 2012) <https://hackage.haskell.org/package/lens>. For a fairly comprehensive (and highly technical) history of lenses please see the lens wiki <https://github.com/ekmett/lens/wiki/History-of-Lenses>.
Given a postulated model and a set of data, the comparison density is estimated and the deviance test is implemented in order to assess if the data distribution deviates significantly from the postulated model. Finally, the results are summarized in a CD-plot as described in Algeri S. (2019) <arXiv:1906.06615>.
This package provides a variety of latent Markov models, including hidden Markov models, hidden semi-Markov models, state-space models and continuous-time variants can be formulated and estimated within the same framework via directly maximising the likelihood function using the so-called forward algorithm. Applied researchers often need custom models that standard software does not easily support. Writing tailored R code offers flexibility but suffers from slow estimation speeds. We address these issues by providing easy-to-use functions (written in C++ for speed) for common tasks like the forward algorithm. These functions can be combined into custom models in a Lego-type approach, offering up to 10-20 times faster estimation via standard numerical optimisers. To aid in building fully custom likelihood functions, several vignettes are included that show how to simulate data from and estimate all the above model classes.
Companion R package for the course "Statistical analysis of correlated and repeated measurements for health science researchers" taught by the section of Biostatistics of the University of Copenhagen. It implements linear mixed models where the model for the variance-covariance of the residuals is specified via patterns (compound symmetry, toeplitz, unstructured, ...). Statistical inference for mean, variance, and correlation parameters is performed based on the observed information and a Satterthwaite approximation of the degrees of freedom. Normalized residuals are provided to assess model misspecification. Statistical inference can be performed for arbitrary linear or non-linear combination(s) of model coefficients. Predictions can be computed conditional to covariates only or also to outcome values.
This package provides density, distribution and random generation functions for the Linear Ballistic Accumulation (LBA) model, a widely used choice response time model in cognitive psychology. The package supports model specifications, parameter estimation, and likelihood computation, facilitating simulation and statistical inference for LBA-based experiments. For details on the LBA model, see Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>.
Computes the implied weights of linear regression models for estimating average causal effects and provides diagnostics based on these weights. These diagnostics rely on the analyses in Chattopadhyay and Zubizarreta (2023) <doi:10.1093/biomet/asac058> where several regression estimators are represented as weighting estimators, in connection to inverse probability weighting. lmw provides tools to diagnose representativeness, balance, extrapolation, and influence for these models, clarifying the target population of inference. Tools are also available to simplify estimating treatment effects for specific target populations of interest.
Time series analysis based on lambda transformer and variational seq2seq, built on Torch'.