Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for vectorised conditional recoding of variables. case_when() enables you to vectorise multiple if and else statements (like CASE WHEN in SQL'). if_else() is a stricter and more predictable version of ifelse() in base that preserves attributes. These functions are forked from dplyr with all package dependencies removed and behave identically to the originals.
Fit and simulate latent position and cluster models for statistical networks. See Krivitsky and Handcock (2008) <doi:10.18637/jss.v024.i05> and Krivitsky, Handcock, Raftery, and Hoff (2009) <doi:10.1016/j.socnet.2009.04.001>.
Error in a binary dependent variable, also known as misclassification, has not drawn much attention in psychology. Ignoring misclassification in logistic regression can result in misleading parameter estimates and statistical inference. This package conducts logistic regression analysis with misspecification in outcome variables.
This package performs recursive partitioning of linear and nonlinear mixed effects models, specifically for longitudinal data. The package is an extension of the original longRPart package by Stewart and Abdolell (2013) <https://cran.r-project.org/package=longRPart>.
Providing a method for Local Discrimination via Latent Class Models. The approach is described in <https://www.r-project.org/conferences/useR-2009/abstracts/pdf/Bucker.pdf>.
This package provides a set of streamlined functions that allow easy generation of linear regression diagnostic plots necessarily for checking linear model assumptions. This package is meant for easy scheming of linear regression diagnostics, while preserving merits of "The Grammar of Graphics" as implemented in ggplot2'. See the ggplot2 website for more information regarding the specific capability of graphics.
Measure similarity between texts. Offers a variety of processing tools and similarity metrics to facilitate flexible representation of texts and matching. Implements forms of Language Style Matching (Ireland & Pennebaker, 2010) <doi:10.1037/a0020386> and Latent Semantic Analysis (Landauer & Dumais, 1997) <doi:10.1037/0033-295X.104.2.211>.
Implementation of the methods described in Holzmann, Klar (2024) <doi: 10.1111/sjos.12733>. Lancaster correlation is a correlation coefficient which equals the absolute value of the Pearson correlation for the bivariate normal distribution, and is equal to or slightly less than the maximum correlation coefficient for a variety of bivariate distributions. Rank and moment-based estimators and corresponding confidence intervals are implemented, as well as independence tests based on these statistics.
Lake temperature records, metadata, and climate drivers for 291 global lakes during the time period 1985-2009. Temperature observations were collected using satellite and in situ methods. Climatic drivers and geomorphometric characteristics were also compiled and are included for each lake. Data are part of the associated publication from the Global Lake Temperature Collaboration project (http://www.laketemperature.org). See citation('laketemps') for dataset attribution.
An implementation of logistic normal multinomial (LNM) clustering. It is an extension of LNM mixture model proposed by Fang and Subedi (2020) <arXiv:2011.06682>, and is designed for clustering compositional data. The package includes 3 extended models: LNM Factor Analyzer (LNM-FA), LNM Bicluster Mixture Model (LNM-BMM) and Penalized LNM Factor Analyzer (LNM-FA). There are several advantages of LNM models: 1. LNM provides more flexible covariance structure; 2. Factor analyzer can reduce the number of parameters to estimate; 3. Bicluster can simultaneously cluster subjects and taxa, and provides significant biological insights; 4. Penalty term allows sparse estimation in the covariance matrix. Details for model assumptions and interpretation can be found in papers: Tu and Subedi (2021) <arXiv:2101.01871> and Tu and Subedi (2022) <doi:10.1002/sam.11555>.
This package provides three classes: Queue, PriorityQueue and Stack. Queue is just a "plain vanilla" FIFO queue; PriorityQueue orders items according to priority. Stack implements LIFO.
Implementation of the algorithm introduced in Shah, R. D. (2016) <https://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits, so the algorithm is very efficient.
Logger to keep track of informational events and errors useful for debugging.
This package provides functions for the longitudinal genetic random field method (He et al., 2015, <doi:10.1111/biom.12310>) to test the association between a longitudinally measured quantitative outcome and a set of genetic variants in a gene/region.
Fits semi-confirmatory structural equation modeling (SEM) via penalized likelihood (PL) or penalized least squares (PLS). For details, please see Huang (2020) <doi:10.18637/jss.v093.i07>.
It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. Missing values and censored observations can be handled as well. This family of distribution includes skewed versions of the Normal, Student's t, Laplace, Slash and Contaminated Normal distribution. It also performs logistic quantile regression for bounded responses as shown in Galarza et.al.(2020) <doi:10.1007/s13571-020-00231-0>. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously.
This package implements bootstrap methods for linear regression models with errors following a time-varying process, focusing on approximating the distribution of the least-squares estimator for regression models with locally stationary errors. It enables the construction of bootstrap and classical confidence intervals for regression coefficients, leveraging intensive simulation studies and real data analysis.
Additional appenders for the logging package lgr that support logging to Elasticsearch', Dynatrace', AWSCloudWatchLog', databases, syslog', email- and push notifications, and more.
Utilities for querying plain text accounting files from Ledger', HLedger', and Beancount'.
Flexible procedures to compute local density-based outlier scores for ranking outliers. Both exact and approximate nearest neighbor search can be implemented, while also accommodating multiple neighborhood sizes and four different local density-based methods. It allows for referencing a random subsample of the input data or a user specified reference data set to compute outlier scores against, so both unsupervised and semi-supervised outlier detection can be implemented.
This package provides classes and methods for objects, whose indexing naturally starts from zero. Subsetting, indexing and mathematical operations are defined naturally between lagged objects and lagged and base R objects. Recycling is not used, except for singletons. The single bracket operator doesn't drop dimensions by default.
This package implements non-parametric tests from Higgins (2004, ISBN:0534387756), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with Rcpp for efficiency and R6 for flexible, object-oriented design, the package provides a unified framework for performing or creating custom permutation tests.
Estimates two-dimensional local wavelet spectra.
This package provides a statistical learning method that tries to find the best set of predictors and interactions between predictors for modeling binary or quantitative response data in a decision tree. Several search algorithms and ensembling techniques are implemented allowing for finetuning the method to the specific problem. Interactions with quantitative covariables can be properly taken into account by fitting local regression models. Moreover, a variable importance measure for assessing marginal and interaction effects is provided. Implements the procedures proposed by Lau et al. (2024, <doi:10.1007/s10994-023-06488-6>).