Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to upload vectorial data and derive landscape connectivity metrics in habitat or matrix systems. Additionally, includes an approach to assess individual patch contribution to the overall landscape connectivity, enabling the prioritization of habitat patches. The computation of landscape connectivity and patch importance are very useful in Landscape Ecology research. The metrics available are: number of components, number of links, size of the largest component, mean size of components, class coincidence probability, landscape coincidence probability, characteristic path length, expected cluster size, area-weighted flux and integral index of connectivity. Pascual-Hortal, L., and Saura, S. (2006) <doi:10.1007/s10980-006-0013-z> Urban, D., and Keitt, T. (2001) <doi:10.2307/2679983> Laita, A., Kotiaho, J., Monkkonen, M. (2011) <doi:10.1007/s10980-011-9620-4>.
This package provides likelihood functions as defined by Fisher (1922) <doi:10.1098/rsta.1922.0009> and a function that creates likelihood functions from density functions. The functions are meant to aid in education of likelihood based methods.
Generates the Langa-Weir classification of cognitive function for the 2022 Health and Retirement Study (HRS) cognition data. It is particularly useful for researchers studying cognitive aging who wish to work with the most recent release of HRS data. The package provides user-friendly functions for data preprocessing, scoring, and classification allowing users to easily apply the Langa-Weir classification system. For details regarding the; HRS <https://hrsdata.isr.umich.edu/> and Langa-Weir classifications <https://hrsdata.isr.umich.edu/data-products/langa-weir-classification-cognitive-function-1995-2020>.
Palettes generated from limnology based field and laboratory photos. Palettes can be used to generate color values to be used in any functions that calls for a color (i.e. ggplot(), plot(), flextable(), etc.).
Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).
LINCS L1000 is a high-throughput technology that allows the gene expression measurement in a large number of assays. However, to fit the measurements of ~1000 genes in the ~500 color channels of LINCS L1000, every two landmark genes are designed to share a single channel. Thus, a deconvolution step is required to infer the expression values of each gene. Any errors in this step can be propagated adversely to the downstream analyses. We present a LINCS L1000 data peak calling R package l1kdeconv based on a new outlier detection method and an aggregate Gaussian mixture model. Upon the remove of outliers and the borrowing information among similar samples, l1kdeconv shows more stable and better performance than methods commonly used in LINCS L1000 data deconvolution.
Estimate linear quantile mixtures based on Time-Constant (TC) and/or Time-Varying (TV), discrete, random coefficients.
This package provides a collection of large language model (LLM) text analysis methods designed with psychological data in mind. Currently, LLMing (aka "lemming") includes a text anomaly detection method based on the angle-based subspace approach described by Zhang, Lin, and Karim (2015) and a text generation method. <doi:10.1016/j.ress.2015.05.025>.
This package creates a series of sets of graphics and statistics related to the longitudinal cascade, all included in a single object. The longitudinal cascade inputs longitudinal data to identify gaps in the HIV and related cascades by observing differences using time to event and survival methods. The stage definitions are set by the user, with default standard options. Outputs include graphics, datasets, and formal statistical tests.
This package provides functions for forest objects detection, structure metrics computation, model calibration and mapping with airborne laser scanning: co-registration of field plots (Monnet and Mermin (2014) <doi:10.3390/f5092307>); tree detection (method 1 in Eysn et al. (2015) <doi:10.3390/f6051721>) and segmentation; forest parameters estimation with the area-based approach: model calibration with ground reference, and maps export (Aussenac et al. (2023) <doi:10.12688/openreseurope.15373.2>); extraction of both physical (gaps, edges, trees) and statistical features useful for e.g. habitat suitability modeling (Glad et al. (2020) <doi:10.1002/rse2.117>) and forest maturity mapping (Fuhr et al. (2022) <doi:10.1002/rse2.274>).
This package contains functions for a flexible varying-coefficient landmark model by incorporating multiple short-term events into the prediction of long-term survival probability. For more information about landmark prediction please see Li, W., Ning, J., Zhang, J., Li, Z., Savitz, S.I., Tahanan, A., Rahbar.M.H., (2023+). "Enhancing Long-term Survival Prediction with Multiple Short-term Events: Landmarking with A Flexible Varying Coefficient Model".
Given independent and identically distributed observations X(1), ..., X(n), allows to compute the maximum likelihood estimator (MLE) of probability mass function (pmf) under the assumption that it is log-concave, see Weyermann (2007) and Balabdaoui, Jankowski, Rufibach, and Pavlides (2012). The main functions of the package are logConDiscrMLE that allows computation of the log-concave MLE, logConDiscrCI that computes pointwise confidence bands for the MLE, and kInflatedLogConDiscr that computes a mixture of a log-concave PMF and a point mass at k.
The Programme for International Student Assessment (PISA) is a global study conducted by the Organization for Economic Cooperation and Development (OECD) in member and non-member countries to assess educational systems by assessing 15-year-old school students academic performance in mathematics, science, and reading. This datasets contains information on their scores and other socioeconomic characteristics, information about their school and its infrastructure, as well as the countries that are taking part in the program.
This package provides a method for factor retention using a pre-trained Long Short Term Memory (LSTM) Network, which is originally developed by Hochreiter and Schmidhuber (1997) <doi:10.1162/neco.1997.9.8.1735>, is provided. The sample size of the dataset used to train the LSTM model is 1,000,000. Each sample is a batch of simulated response data with a specific latent factor structure. The eigenvalues of these response data will be used as sequential data to train the LSTM. The pre-trained LSTM is capable of factor retention for real response data with a true latent factor number ranging from 1 to 10, that is, determining the number of factors.
Use of this package is deprecated. It has been renamed to LifeInsureR'.
This package provides a suite of tools for literature-based discovery in biomedical research. Provides functions for retrieving scientific articles from PubMed and other NCBI databases, extracting biomedical entities (diseases, drugs, genes, etc.), building co-occurrence networks, and applying various discovery models including ABC', AnC', LSI', and BITOLA'. The package also includes visualization tools for exploring discovered connections.
Allows you to read and change the state of LIFX smart light bulbs via the LIFX developer api <https://api.developer.lifx.com/>. Covers most LIFX api endpoints, including changing light color and brightness, selecting lights by id, group or location as well as activating effects.
Miscellaneous functions commonly used by LuLab. This package aims to help more researchers on epidemiology to perform data management and visualization more efficiently.
This package provides an l1-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed graphs using l1-penalty. This algorithm is described with more details in the preprint C. Champion, M. Champion, M. Blazère, R. Burcelin and J.M. Loubes, "l1-spectral clustering algorithm: a spectral clustering method using l1-regularization" (2022).
This package provides flexible but lightweight logging facilities for R scripts. Supports priority levels for logs and messages, flagging messages, capturing script output, switching logs, and logging to files or connections.
This package provides tools are provided to expand vectors of short URLs into long URLs'. No API services are used, which may mean that this operates more slowly than API services do (since they usually cache results of expansions that every user of the service requests). You can setup your own caching layer with the memoise package if you wish to have a speedup during single sessions or add larger dependencies, such as Redis', to gain a longer-term performance boost at the expense of added complexity.
Fits structural equation modeling via penalized likelihood.
In addition to modeling the expectation (location) of an outcome, mixed effects location scale models (MELSMs) include submodels on the variance components (scales) directly. This allows models on the within-group variance with mixed effects, and between-group variances with fixed effects. The MELSM can be used to model volatility, intraindividual variance, uncertainty, measurement error variance, and more. Multivariate MELSMs (MMELSMs) extend the model to include multiple correlated outcomes, and therefore multiple locations and scales. The latent multivariate MELSM (LMMELSM) further includes multiple correlated latent variables as outcomes. This package implements two-level mixed effects location scale models on multiple observed or latent outcomes, and between-group variance modeling. Williams, Martin, Liu, and Rast (2020) <doi:10.1027/1015-5759/a000624>. Hedeker, Mermelstein, and Demirtas (2008) <doi:10.1111/j.1541-0420.2007.00924.x>.
This package provides Shiny widgets and theme that support a Library Computer Access/Retrieval System (LCARS) aesthetic for Shiny apps. The package also includes functions for adding a minimal LCARS theme to static ggplot2 graphs. More details about LCARS can be found at <https://en.wikipedia.org/wiki/LCARS>.