Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows identification of palettes derived from LTER (Long Term Ecological Research) photographs based on user criteria. Also facilitates extraction of palettes from users photos directly.
Interactive shiny application for working with different kinds of latent variable analysis, with the lavaan package. Graphical output for models are provided and different estimators are supported.
This package provides tools for fast and accurate evaluation of skew stable distributions (CDF, PDF and quantile functions), random number generation, and parameter estimation. This is libstableR as per Royuela del Val, Simmross-Wattenberg, and Alberola López (2017) <doi:10.18637/jss.v078.i01> under a new maintainer.
Create maps made of lines. The package contains one function: linemap(). linemap() displays a map made of lines using a raster or gridded data.
For high-dimensional correlated observations, this package carries out the L_1 penalized maximum likelihood estimation of the precision matrix (network) and the correlation parameters. The correlated data can be longitudinal data (may be irregularly spaced) with dampening correlation or clustered data with uniform correlation. For the details of the algorithms, please see the paper Jie Zhou et al. Identifying Microbial Interaction Networks Based on Irregularly Spaced Longitudinal 16S rRNA sequence data <doi:10.1101/2021.11.26.470159>.
This package provides functions for regional frequency analysis using the methods of J. R. M. Hosking and J. R. Wallis (1997), "Regional frequency analysis: an approach based on L-moments".
Connect to the Less Annoying CRM API with ease to get your crm data in a clean and tidy format. Less Annoying CRM is a simple CRM built for small businesses, more information is available on their website <https://www.lessannoyingcrm.com/>.
This package provides a toolbox for R arrays. Flexibly split, bind, reshape, modify, subset and name arrays.
Software for computing a log-concave (maximum likelihood) estimator for independent and identically distributed data in any number of dimensions. For a detailed description of the method see Cule, Samworth and Stewart (2010, Journal of Royal Statistical Society Series B, <doi:10.1111/j.1467-9868.2010.00753.x>).
Data sets exemplifying statistical methods, and some facilitatory utility functions used in ``Analyzing Linguistic Data: A practical introduction to statistics using R'', Cambridge University Press, 2008.
R lists, especially nested lists, can be very difficult to visualize or represent. Sometimes str() is not enough, so this suite of htmlwidgets is designed to help see, understand, and maybe even modify your R lists. The function reactjson() requires a package reactR that can be installed from CRAN or <https://github.com/timelyportfolio/reactR>.
Local Individual Conditional Expectation ('localICE') is a local explanation approach from the field of eXplainable Artificial Intelligence (XAI). localICE is a model-agnostic XAI approach which provides three-dimensional local explanations for particular data instances. The approach is proposed in the master thesis of Martin Walter as an extension to ICE (see Reference). The three dimensions are the two features at the horizontal and vertical axes as well as the target represented by different colors. The approach is applicable for classification and regression problems to explain interactions of two features towards the target. For classification models, the number of classes can be more than two and each class is added as a different color to the plot. The given instance is added to the plot as two dotted lines according to the feature values. The localICE-package can explain features of type factor and numeric of any machine learning model. Automatically supported machine learning packages are mlr', randomForest', caret or all other with an S3 predict function. For further model types from other libraries, a predict function has to be provided as an argument in order to get access to the model. Reference to the ICE approach: Alex Goldstein, Adam Kapelner, Justin Bleich, Emil Pitkin (2013) <arXiv:1309.6392>.
The LIC criterion is to determine the most informative subsets so that the subset can retain most of the information contained in the complete data. The philosophy of the package is described in Guo G. (2022) <doi:10.1080/02664763.2022.2053949>.
This package provides a unified interface for interacting with Large Language Models (LLMs) through various providers including OpenAI <https://platform.openai.com/docs/api-reference>, Ollama <https://ollama.com/>, and other OpenAI-compatible APIs. Features include automatic connection testing, max_tokens limit auto-adjustment, structured JSON responses with schema validation, interactive JSON schema generation, prompt templating, and comprehensive diagnostics.
Perform two linear combination methods for biomarkers: (1) Empirical performance optimization for specificity (or sensitivity) at a controlled sensitivity (or specificity) level of Huang and Sanda (2022) <doi:10.1214/22-aos2210>, and (2) weighted maximum score estimator with empirical minimization of averaged false positive rate and false negative rate. Both adopt the algorithms of Huang and Sanda (2022) <doi:10.1214/22-aos2210>. MOSEK solver is used and needs to be installed; an academic license for MOSEK is free.
Designed to query Longitudinal Employer-Household Dynamics (LEHD) workplace/residential association and origin-destination flat files and optionally aggregate Census block-level data to block group, tract, county, or state. Data comes from the LODES FTP server <https://lehd.ces.census.gov/data/lodes/LODES8/>.
Performing impulse-response function (IRF) analysis of relevant variables of agent-based simulation models, in particular for models described in LSD format. Based on the data produced by the simulation model, it performs both linear and state-dependent IRF analysis, providing the tools required by the Counterfactual Monte Carlo (CMC) methodology (Amendola and Pereira (2024) <doi:10.2139/ssrn.4740360>), including state identification and sensitivity. CMC proposes retrieving the causal effect of shocks by exploiting the opportunity to directly observe the counterfactual in a fully controlled experimental setup. LSD (Laboratory for Simulation Development) is free software available at <https://www.labsimdev.org/>).
This package provides extensions for packages leaflet & mapdeck', many of which are used by package mapview'. Focus is on functionality readily available in Geographic Information Systems such as Quantum GIS'. Includes functions to display coordinates of mouse pointer position, query image values via mouse pointer and zoom-to-layer buttons. Additionally, provides a feature type agnostic function to add points, lines, polygons to a map.
This package provides tools to simulate morphological traits along phylogenetic trees with branch lengths representing evolutionary distance or time. Includes functions for visualizing evolutionary processes along trees and within morphological character matrices.
Estimates membership for the Mandelbrot set.
Simultaneously estimates sparse regression coefficients and response network structure in multivariate models with missing data. Unlike traditional approaches requiring imputation, handles missingness natively through unbiased estimating equations (MCAR/MAR compatible). Employs dual L1 regularization with automated selection via cross-validation or information criteria. Includes parallel computation, warm starts, adaptive grids, publication-ready visualizations, and prediction methods. Ideal for genomics, neuroimaging, and multi-trait studies with incomplete high-dimensional outcomes. See Zeng et al. (2025) <doi:10.48550/arXiv.2507.05990>.
Takes QC signal for each day and normalize metabolomic data that has been acquired in a certain period of time. At least three QC per day are required.
This package provides tools for data analysis with multivariate Bayesian structural time series (MBSTS) models. Specifically, the package provides facilities for implementing general structural time series models, flexibly adding on different time series components (trend, season, cycle, and regression), simulating them, fitting them to multivariate correlated time series data, conducting feature selection on the regression component.
This R package provides an implementation of multivariate extensions of a well-known fractal analysis technique, Detrended Fluctuations Analysis (DFA; Peng et al., 1995<doi:10.1063/1.166141>), for multivariate time series: multivariate DFA (mvDFA). Several coefficients are implemented that take into account the correlation structure of the multivariate time series to varying degrees. These coefficients may be used to analyze long memory and changes in the dynamic structure that would by univariate DFA. Therefore, this R package aims to extend and complement the original univariate DFA (Peng et al., 1995) for estimating the scaling properties of nonstationary time series.