_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-mvgps 1.2.2
Propagated dependencies: r-weightit@1.5.1 r-sp@2.2-0 r-rdpack@2.6.4 r-matrixnormal@0.1.1 r-mass@7.3-65 r-geometry@0.5.2 r-gbm@2.2.2 r-cobalt@4.6.2 r-cbps@0.24
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/williazo/mvGPS
Licenses: Expat
Build system: r
Synopsis: Causal Inference using Multivariate Generalized Propensity Score
Description:

This package provides methods for estimating and utilizing the multivariate generalized propensity score (mvGPS) for multiple continuous exposures described in Williams, J.R, and Crespi, C.M. (2020) <arxiv:2008.13767>. The methods allow estimation of a dose-response surface relating the joint distribution of multiple continuous exposure variables to an outcome. Weights are constructed assuming a multivariate normal density for the marginal and conditional distribution of exposures given a set of confounders. Confounders can be different for different exposure variables. The weights are designed to achieve balance across all exposure dimensions and can be used to estimate dose-response surfaces.

r-madantext 0.1.0
Propagated dependencies: r-xlsx@0.6.5 r-udpipe@0.8.16 r-topicmodels@0.2-17 r-tm@0.7-16 r-tidytext@0.4.3 r-tidyr@1.3.1 r-textminer@3.0.6 r-stringr@1.6.0 r-stringi@1.8.7 r-stopwords@2.3 r-shinythemes@1.2.0 r-shiny@1.11.1 r-persianstemmer@1.0 r-lattice@0.22-7 r-hwordcloud@0.1.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MadanText
Licenses: GPL 3
Build system: r
Synopsis: Persian Text Mining Tool for Frequency Analysis, Statistical Analysis, and Word Clouds
Description:

This is an open-source software designed specifically for text mining in the Persian language. It allows users to examine word frequencies, download data for analysis, and generate word clouds. This tool is particularly useful for researchers and analysts working with Persian language data. This package mainly makes use of the PersianStemmer (Safshekan, R., et al. (2019). <https://CRAN.R-project.org/package=PersianStemmer>), udpipe (Wijffels, J., et al. (2023). <https://CRAN.R-project.org/package=udpipe>), and shiny (Chang, W., et al. (2023). <https://CRAN.R-project.org/package=shiny>) packages.

r-mgbt 1.0.7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://doi.org/10.5066/P9CW9EF0
Licenses: CC0
Build system: r
Synopsis: Multiple Grubbs-Beck Low-Outlier Test
Description:

Compute the multiple Grubbs-Beck low-outlier test on positively distributed data and utilities for noninterpretive U.S. Geological Survey annual peak-streamflow data processing discussed in Cohn et al. (2013) <doi:10.1002/wrcr.20392> and England et al. (2017) <doi:10.3133/tm4B5>.

r-msd 0.3.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=msd
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Method of Successive Dichotomizations
Description:

This package implements the method of successive dichotomizations by Bradley and Massof (2018) <doi:10.1371/journal.pone.0206106>, which estimates item measures, person measures and ordered rating category thresholds given ordinal rating scale data.

r-modelsummary 2.5.0
Propagated dependencies: r-tinytable@0.16.0 r-tables@0.9.33 r-performance@0.15.2 r-parameters@0.28.3 r-insight@1.4.3 r-glue@1.8.0 r-generics@0.1.4 r-data-table@1.17.8 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://modelsummary.com
Licenses: GPL 3
Build system: r
Synopsis: Summary Tables and Plots for Statistical Models and Data: Beautiful, Customizable, and Publication-Ready
Description:

Create beautiful and customizable tables to summarize several statistical models side-by-side. Draw coefficient plots, multi-level cross-tabs, dataset summaries, balance tables (a.k.a. "Table 1s"), and correlation matrices. This package supports dozens of statistical models, and it can produce tables in HTML, LaTeX, Word, Markdown, PDF, PowerPoint, Excel, RTF, JPG, or PNG. Tables can easily be embedded in Rmarkdown or knitr dynamic documents. Details can be found in Arel-Bundock (2022) <doi:10.18637/jss.v103.i01>.

r-moeclust 1.6.0
Propagated dependencies: r-vcd@1.4-13 r-nnet@7.3-20 r-mvnfast@0.2.8 r-mclust@6.1.2 r-matrixstats@1.5.0 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MoEClust
Licenses: GPL 3+
Build system: r
Synopsis: Gaussian Parsimonious Clustering Models with Covariates and a Noise Component
Description:

Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.

r-modelbpp 0.1.6
Propagated dependencies: r-pbapply@1.7-4 r-manymome@0.3.3 r-lavaan@0.6-20 r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://sfcheung.github.io/modelbpp/
Licenses: GPL 3+
Build system: r
Synopsis: Model BIC Posterior Probability
Description:

Fits the neighboring models of a fitted structural equation model and assesses the model uncertainty of the fitted model based on BIC posterior probabilities, using the method presented in Wu, Cheung, and Leung (2020) <doi:10.1080/00273171.2019.1574546>.

r-mlr3fairness 0.4.0
Propagated dependencies: r-rlang@1.1.6 r-r6@2.6.1 r-paradox@1.0.1 r-mlr3pipelines@0.10.0 r-mlr3misc@0.19.0 r-mlr3measures@1.2.0 r-mlr3learners@0.13.0 r-mlr3@1.2.0 r-ggplot2@4.0.1 r-data-table@1.17.8 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://mlr3fairness.mlr-org.com
Licenses: LGPL 3
Build system: r
Synopsis: Fairness Auditing and Debiasing for 'mlr3'
Description:

Integrates fairness auditing and bias mitigation methods for the mlr3 ecosystem. This includes fairness metrics, reporting tools, visualizations and bias mitigation techniques such as "Reweighing" described in Kamiran, Calders (2012) <doi:10.1007/s10115-011-0463-8> and "Equalized Odds" described in Hardt et al. (2016) <https://papers.nips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf>. Integration with mlr3 allows for auditing of ML models as well as convenient joint tuning of machine learning algorithms and debiasing methods.

r-multimorbidity 0.5.1
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-stringr@1.6.0 r-sqldf@0.4-11 r-rlang@1.1.6 r-magrittr@2.0.4 r-lubridate@1.9.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/WYATTBENSKEN/multimorbidity
Licenses: Expat
Build system: r
Synopsis: Harmonizing Various Comorbidity, Multimorbidity, and Frailty Measures
Description:

Identifying comorbidities, frailty, and multimorbidity in claims and administrative data is often a duplicative process. The functions contained in this package are meant to first prepare the data to a format acceptable by all other packages, then provide a uniform and simple approach to generate comorbidity and multimorbidity metrics based on these claims data. The package is ever evolving to include new metrics, and is always looking for new measures to include. The citations used in this package include the following publications: Anne Elixhauser, Claudia Steiner, D. Robert Harris, Rosanna M. Coffey (1998) <doi:10.1097/00005650-199801000-00004>, Brian J Moore, Susan White, Raynard Washington, et al. (2017) <doi:10.1097/MLR.0000000000000735>, Mary E. Charlson, Peter Pompei, Kathy L. Ales, C. Ronald MacKenzie (1987) <doi:10.1016/0021-9681(87)90171-8>, Richard A. Deyo, Daniel C. Cherkin, Marcia A. Ciol (1992) <doi:10.1016/0895-4356(92)90133-8>, Hude Quan, Vijaya Sundararajan, Patricia Halfon, et al. (2005) <doi:10.1097/01.mlr.0000182534.19832.83>, Dae Hyun Kim, Sebastian Schneeweiss, Robert J Glynn, et al. (2018) <doi:10.1093/gerona/glx229>, Melissa Y Wei, David Ratz, Kenneth J Mukamal (2020) <doi:10.1111/jgs.16310>, Kathryn Nicholson, Amanda L. Terry, Martin Fortin, et al. (2015) <doi:10.15256/joc.2015.5.61>, Martin Fortin, José Almirall, and Kathryn Nicholson (2017)<doi:10.15256/joc.2017.7.122>.

r-matchgate 0.0.10
Propagated dependencies: r-locpol@0.9.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MatchGATE
Licenses: GPL 3
Build system: r
Synopsis: Estimate Group Average Treatment Effects with Matching
Description:

Two novel matching-based methods for estimating group average treatment effects (GATEs). The match_y1y0() and match_y1y0_bc() functions are used for imputing the potential outcomes based on matching and bias-corrected matching techniques, respectively. The EstGATE() function is employed to estimate the GATE after imputing the potential outcomes.

r-mclink 1.1.1
Propagated dependencies: r-tibble@3.3.0 r-stringr@1.6.0 r-dplyr@1.1.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/LiuyangLee/mclink
Licenses: GPL 3
Build system: r
Synopsis: Metabolic Pathway Completeness and Abundance Calculation
Description:

This package provides tools for analyzing metabolic pathway completeness, abundance, and transcripts using KEGG Orthology (KO) data from (meta)genomic and (meta)transcriptomic studies. Supports both completeness (presence/absence) and abundance-weighted analyses. Includes built-in KEGG reference datasets. For more details see Li et al. (2023) <doi:10.1038/s41467-023-42193-7>.

r-mistr 0.0.6
Propagated dependencies: r-bbmle@1.0.25.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mistr
Licenses: GPL 3
Build system: r
Synopsis: Mixture and Composite Distributions
Description:

This package provides a flexible computational framework for mixture distributions with the focus on the composite models.

r-mbnmadose 0.5.0
Dependencies: jags@4.3.1
Propagated dependencies: r-scales@1.4.0 r-rjags@4-17 r-reshape2@1.4.5 r-rdpack@2.6.4 r-r2jags@0.8-9 r-magrittr@2.0.4 r-igraph@2.2.1 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://hugaped.github.io/MBNMAdose/
Licenses: GPL 3
Build system: r
Synopsis: Dose-Response MBNMA Models
Description:

Fits Bayesian dose-response model-based network meta-analysis (MBNMA) that incorporate multiple doses within an agent by modelling different dose-response functions, as described by Mawdsley et al. (2016) <doi:10.1002/psp4.12091>. By modelling dose-response relationships this can connect networks of evidence that might otherwise be disconnected, and can improve precision on treatment estimates. Several common dose-response functions are provided; others may be added by the user. Various characteristics and assumptions can be flexibly added to the models, such as shared class effects. The consistency of direct and indirect evidence in the network can be assessed using unrelated mean effects models and/or by node-splitting at the treatment level.

r-mirtcat 1.14
Propagated dependencies: r-shiny@1.11.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-pbapply@1.7-4 r-mirt@1.45.1 r-markdown@2.0 r-lpsolve@5.6.23 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/philchalmers/mirtCAT
Licenses: GPL 3+
Build system: r
Synopsis: Computerized Adaptive Testing with Multidimensional Item Response Theory
Description:

This package provides tools to generate HTML interfaces for adaptive and non-adaptive tests using the shiny package (Chalmers (2016) <doi:10.18637/jss.v071.i05>). Suitable for applying unidimensional and multidimensional computerized adaptive tests (CAT) using item response theory methodology and for creating simple questionnaires forms to collect response data directly in R. Additionally, optimal test designs (e.g., "shadow testing") are supported for tests that contain a large number of item selection constraints. Finally, package contains tools useful for performing Monte Carlo simulations for studying test item banks.

r-matchlinreg 0.8.1
Propagated dependencies: r-matching@4.10-15 r-hmisc@5.2-4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MatchLinReg
Licenses: GPL 2+
Build system: r
Synopsis: Combining Matching and Linear Regression for Causal Inference
Description:

Core functions as well as diagnostic and calibration tools for combining matching and linear regression for causal inference in observational studies.

r-mess 0.6.0
Propagated dependencies: r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-matrix@1.7-4 r-mass@7.3-65 r-kinship2@1.9.6.2 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-ggformula@1.0.0 r-geepack@1.3.13 r-geem@0.10.1 r-clipr@0.8.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ekstroem/MESS
Licenses: GPL 2
Build system: r
Synopsis: Miscellaneous Esoteric Statistical Scripts
Description:

This package provides a mixed collection of useful and semi-useful diverse statistical functions, some of which may even be referenced in The R Primer book. See Ekstrøm, C. T. (2016). The R Primer. 2nd edition. Chapman & Hall.

r-maskranger 1.1
Propagated dependencies: r-sp@2.2-0 r-raster@3.6-32 r-magrittr@2.0.4 r-lubridate@1.9.4 r-e1071@1.7-16 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=maskRangeR
Licenses: GPL 3
Build system: r
Synopsis: Mask Species Geographic Ranges
Description:

Mask ranges based on expert knowledge or remote sensing layers. These tools can be combined to quantitatively and reproducibly generate a new map or to update an existing map. Methods include expert opinion and data-driven tools to generate thresholds for binary masks.

r-missforestpredict 1.0.1
Propagated dependencies: r-ranger@0.17.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/sibipx/missForestPredict
Licenses: GPL 2+
Build system: r
Synopsis: Missing Value Imputation using Random Forest for Prediction Settings
Description:

Missing data imputation based on the missForest algorithm (Stekhoven, Daniel J (2012) <doi:10.1093/bioinformatics/btr597>) with adaptations for prediction settings. The function missForest() is used to impute a (training) dataset with missing values and to learn imputation models that can be later used for imputing new observations. The function missForestPredict() is used to impute one or multiple new observations (test set) using the models learned on the training data. For more details see Albu, E., Gao, S., Wynants, L., & Van Calster, B. (2024). missForestPredict--Missing data imputation for prediction settings <doi:10.48550/arXiv.2407.03379>.

r-muvr2 0.1.0
Propagated dependencies: r-ranger@0.17.0 r-randomforest@4.7-1.2 r-psych@2.5.6 r-proc@1.19.0.1 r-mgcv@1.9-4 r-magrittr@2.0.4 r-glmnet@4.1-10 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/MetaboComp/MUVR2
Licenses: GPL 3
Build system: r
Synopsis: Multivariate Methods with Unbiased Variable Selection
Description:

Predictive multivariate modelling for metabolomics. Types: Classification and regression. Methods: Partial Least Squares, Random Forest ans Elastic Net Data structures: Paired and unpaired Validation: repeated double cross-validation (Westerhuis et al. (2008)<doi:10.1007/s11306-007-0099-6>, Filzmoser et al. (2009)<doi:10.1002/cem.1225>) Variable selection: Performed internally, through tuning in the inner cross-validation loop.

r-mrmcbinary 1.0.5
Propagated dependencies: r-survival@3.8-3 r-desctools@0.99.60
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/seungjae2525/MRMCbinary
Licenses: Expat
Build system: r
Synopsis: Multi-Reader Multi-Case Analysis of Binary Diagnostic Tests
Description:

The goal of MRMCbinary is to compare the performance of diagnostic tests (i.e., sensitivity and specificity) for binary outcomes in multi-reader multi-case (MRMC) studies. It is based on conditional logistic regression and Cochranâ s Q test (or McNemarâ s test when the number of modalities is equal to 2).

r-mp 0.4.1
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mp
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Multidimensional Projection Techniques
Description:

Multidimensional projection techniques are used to create two dimensional representations of multidimensional data sets.

r-mirecsurv 1.0.2
Propagated dependencies: r-survival@3.8-3 r-stringi@1.8.7 r-matrixstats@1.5.0 r-compoissonreg@0.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=miRecSurv
Licenses: GPL 2+
Build system: r
Synopsis: Left-Censored Recurrent Events Survival Models
Description:

Fitting recurrent events survival models for left-censored data with multiple imputation of the number of previous episodes. See Hernández-Herrera G, Moriña D, Navarro A. (2020) <arXiv:2007.15031>.

r-mpathsenser 1.2.4
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rsqlite@2.4.4 r-rlang@1.1.6 r-purrr@1.2.0 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-furrr@0.3.1 r-dplyr@1.1.4 r-dbplyr@2.5.1 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/koenniem/mpathsenser
Licenses: GPL 3+
Build system: r
Synopsis: Process and Analyse Data from m-Path Sense
Description:

Overcomes one of the major challenges in mobile (passive) sensing, namely being able to pre-process the raw data that comes from a mobile sensing app, specifically m-Path Sense <https://m-path.io>. The main task of mpathsenser is therefore to read m-Path Sense JSON files into a database and provide several convenience functions to aid in data processing.

r-metaumbrella 1.1.0
Propagated dependencies: r-xtable@1.8-4 r-writexl@1.5.4 r-withr@3.0.2 r-readxl@1.4.5 r-pwr@1.3-0 r-powersurvepi@0.1.5 r-metaconvert@1.0.3 r-meta@8.2-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaumbrella
Licenses: GPL 3
Build system: r
Synopsis: Umbrella Review Package for R
Description:

This package provides a comprehensive range of facilities to perform umbrella reviews with stratification of the evidence in R. The package accomplishes this aim by building on three core functions that: (i) automatically perform all required calculations in an umbrella review (including but not limited to meta-analyses), (ii) stratify evidence according to various classification criteria, and (iii) generate a visual representation of the results. Note that if you are not familiar with R, the core features of this package are available from a web browser (<https://www.metaumbrella.org/>).

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283