Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of helper functions for analyzing Second Primary Cancer data, including functions to reshape data, to calculate patient states and analyze cancer incidence.
Mixed model-based genome-wide association analysis that accommodate population membership information, variance adjustment, and correlated responses.
This package provides a series of functions to implement association of covariance for detecting differential co-expression (ACDC), a novel approach for detection of differential co-expression that simultaneously accommodates multiple phenotypes or exposures with binary, ordinal, or continuous data types. Users can use the default method which identifies modules by Partition or may supply their own modules. Also included are functions to choose an information loss criterion (ILC) for Partition using OmicS-data-based Complex trait Analysis (OSCA) and Genome-wide Complex trait Analysis (GCTA). The manuscript describing these methods is as follows: Queen K, Nguyen MN, Gilliland F, Chun S, Raby BA, Millstein J. "ACDC: a general approach for detecting phenotype or exposure associated co-expression" (2023) <doi:10.3389/fmed.2023.1118824>.
Automatic marking of R assignments for students and teachers based on testthat test suites.
This package provides a set of tools for fitting Markov-modulated linear regression, where responses Y(t) are time-additive, and model operates in the external environment, which is described as a continuous time Markov chain with finite state space. Model is proposed by Alexander Andronov (2012) <arXiv:1901.09600v1> and algorithm of parameters estimation is based on eigenvalues and eigenvectors decomposition. Markov-switching regression models have the same idea of varying the regression parameters randomly in accordance with external environment. The difference is that for Markov-modulated linear regression model the external environment is described as a continuous-time homogeneous irreducible Markov chain with known parameters while switching models consider Markov chain as unobserved and estimation procedure involves estimation of transition matrix. These models have significant differences in terms of the analytical approach. Also, package provides a set of data simulation tools for Markov-modulated linear regression (for academical/research purposes). Research project No. 1.1.1.2/VIAA/1/16/075.
Three main functions about analyzing massive data (missing observations are allowed) considered from multiple layers of categories are demonstrated. Flexible and diverse applications of the function parameters make the data analyses powerful.
High-dimensional data integration is a critical but difficult problem in genomics research because of potential biases from high-throughput experiments. We present MANCIE, a computational method for integrating two genomic data sets with homogenous dimensions from different sources based on a PCA procedure as an approximation to a Bayesian approach.
Programmatic interface to several NASA Earth Observation OPeNDAP servers (Open-source Project for a Network Data Access Protocol) (<https://www.opendap.org/>). Allows for easy downloads of MODIS subsets, as well as other Earth Observation datacubes, in a time-saving and efficient way : by sampling it at the very downloading phase (spatially, temporally and dimensionally).
This package provides a rmarkdown template that supports company logo, contact info, watermarks and more. Currently restricted to Latex'/'Markdown'; a similar HTML theme will be added in the future.
The Molecular Signatures Database ('MSigDB') is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis <doi:10.1016/j.cels.2015.12.004>. The msig package provides you with powerful, easy-to-use and flexible query functions for the MsigDB database. There are 2 query modes in the msig package: online query and local query. Both queries contain 2 steps: gene set name and gene. The online search is divided into 2 modes: registered search and non-registered browse. For registered search, email that you registered should be provided. Local queries can be made from local database, which can be updated by msig_update() function.
This package provides a set of tools for likelihood-based estimation, model selection and testing of two- and three-range shift and migration models for animal movement data as described in Gurarie et al. (2017) <doi: 10.1111/1365-2656.12674>. Provided movement data (X, Y and Time), including irregularly sampled data, functions estimate the time, duration and location of one or two range shifts, as well as the ranging area and auto-correlation structure of the movment. Tests assess, for example, whether the shift was "significant", and whether a two-shift migration was a true return migration.
This package implements Gibbs sampling and Bayes factors for multinomial models with linear inequality constraints on the vector of probability parameters. As special cases, the model class includes models that predict a linear order of binomial probabilities (e.g., p[1] < p[2] < p[3] < .50) and mixture models assuming that the parameter vector p must be inside the convex hull of a finite number of predicted patterns (i.e., vertices). A formal definition of inequality-constrained multinomial models and the implemented computational methods is provided in: Heck, D.W., & Davis-Stober, C.P. (2019). Multinomial models with linear inequality constraints: Overview and improvements of computational methods for Bayesian inference. Journal of Mathematical Psychology, 91, 70-87. <doi:10.1016/j.jmp.2019.03.004>. Inequality-constrained multinomial models have applications in the area of judgment and decision making to fit and test random utility models (Regenwetter, M., Dana, J., & Davis-Stober, C.P. (2011). Transitivity of preferences. Psychological Review, 118, 42â 56, <doi:10.1037/a0021150>) or to perform outcome-based strategy classification to select the decision strategy that provides the best account for a vector of observed choice frequencies (Heck, D.W., Hilbig, B.E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26â 40. <doi:10.1016/j.cogpsych.2017.05.003>).
This package provides a toolkit for identifying potential mortalities and expelled tags in aquatic acoustic telemetry arrays. Designed for arrays with non-overlapping receivers.
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of several type of toxicological data. binary (e.g., survival, mobility), count (e.g., reproduction) and continuous (e.g., growth as length, weight). Estimation procedures can be used without a deep knowledge of their underlying probabilistic model or inference methods. Rather, they were designed to behave as well as possible without requiring a user to provide values for some obscure parameters. That said, models can also be used as a first step to tailor new models for more specific situations.
Mixed effects cumulative and baseline logit link models for the analysis of ordinal or nominal responses, with non-parametric distribution for the random effects.
Given a set of data points, a clustering is defined as a disjoint partition where each pair of sets in a partition has no overlapping elements. This package provides 25 methods that play a role somewhat similar to distance or metric that measures similarity of two clusterings - or partitions. For a more detailed description, see Meila, M. (2005) <doi:10.1145/1102351.1102424>.
This package contains a collection of datasets for working with machine learning tasks. It will contain datasets for supervised machine learning Jiang (2020)<doi:10.1016/j.beth.2020.05.002> and will include datasets for classification and regression. The aim of this package is to use data generated around health and other domains.
Solve scalar-on-function linear models, including generalized linear mixed effect model and quantile linear regression model, and bias correction estimation methods due to measurement error. Details about the measurement error bias correction methods, see Luan et al. (2023) <doi:10.48550/arXiv.2305.12624>, Tekwe et al. (2022) <doi:10.1093/biostatistics/kxac017>, Zhang et al. (2023) <doi:10.5705/ss.202021.0246>, Tekwe et al. (2019) <doi:10.1002/sim.8179>.
Transferring over a code base from Matlab to R is often a repetitive and inefficient use of time. This package provides a translator for Matlab / Octave code into R code. It does some syntax changes, but most of the heavy lifting is in the function changes since the languages are so similar. Options for different data structures and the functions that can be changed are given. The Matlab code should be mostly in adherence to the standard style guide but some effort has been made to accommodate different number of spaces and other small syntax issues. This will not make the code more R friendly and may not even run afterwards. However, the rudimentary syntax, base function and data structure conversion is done quickly so that the maintainer can focus on changes to the design structure.
Equivalence tests and related confidence intervals for the comparison of two treatments, simultaneously for one or many normally distributed, primary response variables (endpoints). The step-up procedure of Quan et al. (2001) is both applied for differences and extended to ratios of means. A related single-step procedure is also available.
Automatically estimate 11 effect size measures from a well-formatted dataset. Various other functions can help, for example, removing dependency between several effect sizes, or identifying differences between two datasets. This package is mainly designed to assist in conducting a systematic review with a meta-analysis but can be useful to any researcher interested in estimating an effect size.
Model stability and variable inclusion plots [Mueller and Welsh (2010, <doi:10.1111/j.1751-5823.2010.00108.x>); Murray, Heritier and Mueller (2013, <doi:10.1002/sim.5855>)] as well as the adaptive fence [Jiang et al. (2008, <doi:10.1214/07-AOS517>); Jiang et al. (2009, <doi:10.1016/j.spl.2008.10.014>)] for linear and generalised linear models.
The Macroeconomics-at-Risk (MaR) approach is based on a two-step semi-parametric estimation procedure that allows to forecast the full conditional distribution of an economic variable at a given horizon, as a function of a set of factors. These density forecasts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-at-risk, expected shortfall, downside entropy. Initially introduced by Adrian et al. (2019) <doi:10.1257/aer.20161923> to reveal the vulnerability of economic growth to financial conditions, the MaR approach is currently extensively used by international financial institutions to provide Value-at-Risk (VaR) type forecasts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package provides methods for estimating these models. Datasets for the US and the Eurozone are available to allow testing of the Adrian et al (2019) model. This package constitutes a useful toolbox (data and functions) for private practitioners, scholars as well as policymakers.
An approach to identifies metabolic biomarker signature for metabolic data by discovering predictive metabolite for predicting survival and classifying patients into risk groups. Classifiers are constructed as a linear combination of predictive/important metabolites, prognostic factors and treatment effects if necessary. Several methods were implemented to reduce the metabolomics matrix such as the principle component analysis of Wold Svante et al. (1987) <doi:10.1016/0169-7439(87)80084-9> , the LASSO method by Robert Tibshirani (1998) <doi:10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3>, the elastic net approach by Hui Zou and Trevor Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>. Sensitivity analysis on the quantile used for the classification can also be accessed to check the deviation of the classification group based on the quantile specified. Large scale cross validation can be performed in order to investigate the mostly selected predictive metabolites and for internal validation. During the evaluation process, validation is accessed using the hazard ratios (HR) distribution of the test set and inference is mainly based on resampling and permutations technique.