Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of a framework for cluster analysis with selection of the final number of clusters and an optional variable selection procedure. The package is designed to integrate the results of multiple imputed datasets while accounting for the uncertainty that the imputations introduce in the final results. In addition, the package can also be used for a cluster analysis of the complete cases of a single dataset. The package also includes specific methods to summarize and plot the results. The methods are described in Basagana et al. (2013) <doi:10.1093/aje/kws289>.
Development, simulation testing, and implementation of management procedures for fisheries (see Carruthers & Hordyk (2018) <doi:10.1111/2041-210X.13081>).
Detection of migration events and segments of continuous residence based on irregular time series of location data as published in Chi et al. (2020) <doi:10.1371/journal.pone.0239408>.
Highly variable gene selection methods, including popular public available methods, and also the mixture of multiple highly variable gene selection methods, <https://github.com/RuzhangZhao/mixhvg>. Reference: <doi:10.1101/2024.08.25.608519>.
Projection based methods for preprocessing, exploring and analysis of multivariate data used in chemometrics. S. Kucheryavskiy (2020) <doi:10.1016/j.chemolab.2020.103937>.
Friendly implementation of the Mann-Whitney-Wilcoxon test for competitive gene set enrichment analysis.
Multiple 2 by 2 tables often arise in meta-analysis which combines statistical evidence from multiple studies. Two risks within the same study are possibly correlated because they share some common factors such as environment and population structure. This package implements a set of novel Bayesian approaches for multivariate meta analysis when the risks within the same study are independent or correlated. The exact posterior inference of odds ratio, relative risk, and risk difference given either a single 2 by 2 table or multiple 2 by 2 tables is provided. Luo, Chen, Su, Chu, (2014) <doi:10.18637/jss.v056.i11>, Chen, Luo, (2011) <doi:10.1002/sim.4248>, Chen, Chu, Luo, Nie, Chen, (2015) <doi:10.1177/0962280211430889>, Chen, Luo, Chu, Su, Nie, (2014) <doi:10.1080/03610926.2012.700379>, Chen, Luo, Chu, Wei, (2013) <doi:10.1080/19466315.2013.791483>.
An ensemble classifier for multiclass classification. This is a novel classifier that natively works as an ensemble. It projects data on a large number of matrices, and uses very simple classifiers on each of these projections. The results are then combined, ideally via Dempster-Shafer Calculus.
Identify and rank CpG DNA methylation conservation along the human genome. Specifically it includes bootstrapping methods to provide ranking which should adjust for the differences in length as without it short regions tend to get higher conservation scores.
Classify missing data as missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). This step is required before handling missing data (e.g. mean imputation) so that bias is not introduced. See Little (1988) <doi:10.1080/01621459.1988.10478722> for the statistical rationale for the methods used.
This package provides tools to compute depth measures and implementations of related tasks such as outlier detection, data exploration and classification of multivariate, regression and functional data.
The minimax family of distributions is a two-parameter family like the beta family, but computationally a lot more tractible.
Implementation of the methodology of Aleshin-Guendel & Sadinle (2022) <doi:10.1080/01621459.2021.2013242>. It handles the general problem of multifile record linkage and duplicate detection, where any number of files are to be linked, and any of the files may have duplicates.
This package provides a function for the estimation of mixture of longitudinal factor analysis models using the iterative expectation-maximization algorithm (Ounajim, Slaoui, Louis, Billot, Frasca, Rigoard (2023) <doi:10.1002/sim.9804>) and several tools for visualizing and interpreting the models parameters.
Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the Tidyverse" available at <https://moderndive.com/>.
This package provides a Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization algorithm. MADGRAD is a best-of-both-worlds optimizer with the generalization performance of stochastic gradient descent and at least as fast convergence as that of Adam, often faster. A drop-in optim_madgrad() implementation is provided based on Defazio et al (2020) <arxiv:2101.11075>.
Multi-criteria design of experiments algorithm that simultaneously optimizes up to six different criteria ('I', Id', D', Ds', A and As'). The algorithm finds the optimal Pareto front and, if requested, selects a possible symmetrical design on it. The symmetrical design is selected based on two techniques: minimum distance with the Utopia point or the TOPSIS approach.
Assessment of inconsistency in meta-analysis by calculating the Decision Inconsistency index (DI) and the Across-Studies Inconsistency (ASI) index. These indices quantify inconsistency taking into account outcome-level decision thresholds.
Quickly make tables of descriptive statistics (i.e., counts, means, confidence intervals) for continuous variables. This package is designed to work in a Tidyverse pipeline, and consideration has been given to get results from R to Microsoft Word ® with minimal pain.
This package provides functions for fitting monotone polynomials to data. Detailed discussion of the methodologies used can be found in Murray, Mueller and Turlach (2013) <doi:10.1007/s00180-012-0390-5> and Murray, Mueller and Turlach (2016) <doi:10.1080/00949655.2016.1139582>.
Algorithms to approximate the Pareto-front of multi-criteria minimum spanning tree problems.
Maximum entropy density based dependent data bootstrap. An algorithm is provided to create a population of time series (ensemble) without assuming stationarity. The reference paper (Vinod, H.D., 2004 <DOI:10.1016/j.jempfin.2003.06.002>) explains how the algorithm satisfies the ergodic theorem and the central limit theorem.
The goal of McMiso is to provide functions for isotonic regression when there are multiple independent variables. The functions solve the optimization problem using recursion and leverage parallel computing to improve speed, and are useful for situations with relatively large number of covariates. The estimation method follows the projective Bayes solution described in Cheung and Diaz (2023) <doi:10.1093/jrsssb/qkad014>.
Model fitting, sampling and visualization for the (Hidden) Markov Random Field model with pairwise interactions and general interaction structure from Freguglia, Garcia & Bicas (2020) <doi:10.1002/env.2613>, which has many popular models used in 2-dimensional lattices as particular cases, like the Ising Model and Potts Model. A complete manuscript describing the package is available in Freguglia & Garcia (2022) <doi:10.18637/jss.v101.i08>.