_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-mmcmcbayes 0.2.0
Propagated dependencies: r-mcmcpack@1.7-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/zyang1919/mmcmcBayes
Licenses: GPL 3
Synopsis: Multistage MCMC Method for Detecting DMRs
Description:

This package implements differential methylation region (DMR) detection using a multistage Markov chain Monte Carlo (MCMC) algorithm based on the alpha-skew generalized normal (ASGN) distribution. Version 0.2.0 removes the Anderson-Darling test stage, improves computational efficiency of the core ASGN and multistage MCMC routines, and adds convenience functions for summarizing and visualizing detected DMRs. The methodology is based on Yang (2025) <https://www.proquest.com/docview/3218878972>.

r-musicmct 0.3.0
Propagated dependencies: r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://satbq.github.io/musicMCT/
Licenses: GPL 3+
Synopsis: Analyze the Structure of Musical Scales
Description:

Analysis of musical scales (& modes, grooves, etc.) in the vein of Sherrill 2025 <doi:10.1215/00222909-11595194>. The initials MCT in the package title refer to the article's title: "Modal Color Theory." Offers support for conventional musical pitch class set theory as developed by Forte (1973, ISBN: 9780300016109) and David Lewin (1987, ISBN: 9780300034936), as well as for the continuous geometries of Callender, Quinn, & Tymoczko (2008) <doi:10.1126/science.1153021>. Identifies structural properties of scales and calculates derived values (sign vector, color number, brightness ratio, etc.). Creates plots such as "brightness graphs" which visualize these properties.

r-moeadr 1.1.3
Propagated dependencies: r-fnn@1.1.4.1 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://fcampelo.github.io/MOEADr/
Licenses: GPL 2
Synopsis: Component-Wise MOEA/D Implementation
Description:

Modular implementation of Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) [Zhang and Li (2007), <DOI:10.1109/TEVC.2007.892759>] for quick assembling and testing of new algorithmic components, as well as easy replication of published MOEA/D proposals. The full framework is documented in a paper published in the Journal of Statistical Software [<doi:10.18637/jss.v092.i06>].

r-msrdt 0.1.0
Propagated dependencies: r-reshape2@1.4.5 r-gtools@3.9.5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ericchen12377/MSRDT
Licenses: GPL 3
Synopsis: Multi-State Reliability Demonstration Tests (MSRDT)
Description:

This is a implementation of design methods for multi-state reliability demonstration tests (MSRDT) with failure count data, which is associated with the work from the published paper "Multi-state Reliability Demonstration Tests" by Suiyao Chen et al. (2017) <doi:10.1080/08982112.2017.1314493>. It implements two types of MSRDT, multiple periods (MP) and multiple failure modes (MFM). For MP, two different scenarios with criteria on cumulative periods (Cum) or separate periods (Sep) are implemented respectively. It also provides the implementation of conventional design method, namely binomial tests for failure count data.

r-memapp 2.16
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.6.0 r-stringi@1.8.7 r-shinywidgets@0.9.0 r-shinyjs@2.1.0 r-shinydashboard@0.7.3 r-shinybs@0.61.1 r-shiny@1.11.1 r-rcolorbrewer@1.1-3 r-plotly@4.11.0 r-mem@2.19 r-ggplot2@4.0.1 r-formattable@0.2.1 r-dt@0.34.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/lozalojo/memapp
Licenses: GPL 2+
Synopsis: The Moving Epidemic Method Web Application
Description:

The Moving Epidemic Method, created by T Vega and JE Lozano (2012, 2015) <doi:10.1111/j.1750-2659.2012.00422.x>, <doi:10.1111/irv.12330>, allows the weekly assessment of the epidemic and intensity status to help in routine respiratory infections surveillance in health systems. Allows the comparison of different epidemic indicators, timing and shape with past epidemics and across different regions or countries with different surveillance systems. Also, it gives a measure of the performance of the method in terms of sensitivity and specificity of the alert week. memapp is a web application created in the Shiny framework for the mem R package.

r-mapme-biodiversity 0.9.5
Dependencies: proj@9.3.1 gdal@3.8.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-terra@1.8-86 r-sf@1.0-23 r-purrr@1.2.0 r-magrittr@2.0.4 r-jsonlite@2.0.0 r-httr2@1.2.1 r-furrr@0.3.1 r-dplyr@1.1.4 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://mapme-initiative.github.io/mapme.biodiversity/
Licenses: GPL 3+
Synopsis: Efficient Monitoring of Global Biodiversity Portfolios
Description:

Biodiversity areas, especially primary forest, serve a multitude of functions for local economy, regional functionality of the ecosystems as well as the global health of our planet. Recently, adverse changes in human land use practices and climatic responses to increased greenhouse gas emissions, put these biodiversity areas under a variety of different threats. The present package helps to analyse a number of biodiversity indicators based on freely available geographical datasets. It supports computational efficient routines that allow the analysis of potentially global biodiversity portfolios. The primary use case of the package is to support evidence based reporting of an organization's effort to protect biodiversity areas under threat and to identify regions were intervention is most duly needed.

r-mittagleffler 0.4.1
Propagated dependencies: r-stabledist@0.7-2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://strakaps.github.io/MittagLeffleR/
Licenses: GPL 2+
Synopsis: Mittag-Leffler Family of Distributions
Description:

This package implements the Mittag-Leffler function, distribution, random variate generation, and estimation. Based on the Laplace-Inversion algorithm by Garrappa, R. (2015) <doi:10.1137/140971191>.

r-meto 0.1.1
Propagated dependencies: r-lubridate@1.9.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MeTo
Licenses: GPL 2+
Synopsis: Meteorological Tools
Description:

Meteorological Tools following the FAO56 irrigation paper of Allen et al. (1998) [1]. Functions for calculating: reference evapotranspiration (ETref), extraterrestrial radiation (Ra), net radiation (Rn), saturation vapor pressure (satVP), global radiation (Rs), soil heat flux (G), daylight hours, and more. [1] Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9).

r-mazamaspatialplots 0.3.0
Propagated dependencies: r-tmap@4.2 r-sf@1.0-23 r-rlang@1.1.6 r-mazamaspatialutils@0.8.7 r-mazamacoreutils@0.5.3 r-magrittr@2.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/MazamaScience/MazamaSpatialPlots
Licenses: GPL 3
Synopsis: Thematic Plots for Mazama Spatial Datasets
Description:

This package provides a suite of convenience functions for generating US state and county thematic maps using datasets from the MazamaSpatialUtils package.

r-mixgb 2.0.3
Propagated dependencies: r-xgboost@1.7.11.1 r-rfast@2.1.5.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mice@3.18.0 r-matrix@1.7-4 r-magrittr@2.0.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/agnesdeng/mixgb
Licenses: GPL 3+
Synopsis: Multiple Imputation Through 'XGBoost'
Description:

Multiple imputation using XGBoost', subsampling, and predictive mean matching as described in Deng and Lumley (2023) <doi:10.1080/10618600.2023.2252501>. The package supports various types of variables, offers flexible settings, and enables saving an imputation model to impute new data. Data processing and memory usage have been optimised to speed up the imputation process.

r-mixlfa 1.0.0
Propagated dependencies: r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-pheatmap@1.0.13 r-gparotation@2025.3-1 r-ggplot2@4.0.1 r-ggally@2.4.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MixLFA
Licenses: GPL 3
Synopsis: Mixture of Longitudinal Factor Analysis Methods
Description:

This package provides a function for the estimation of mixture of longitudinal factor analysis models using the iterative expectation-maximization algorithm (Ounajim, Slaoui, Louis, Billot, Frasca, Rigoard (2023) <doi:10.1002/sim.9804>) and several tools for visualizing and interpreting the models parameters.

r-mapctools 0.1.0
Propagated dependencies: r-viridis@0.6.5 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-survey@4.4-8 r-stringr@1.6.0 r-scales@1.4.0 r-rlang@1.1.6 r-purrr@1.2.0 r-gridextra@2.3 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-fastdummies@1.7.5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/LarsVatten/MAPCtools
Licenses: Expat
Synopsis: Multivariate Age-Period-Cohort (MAPC) Modeling for Health Data
Description:

Bayesian multivariate age-period-cohort (MAPC) models for analyzing health data, with support for model fitting, visualization, stratification, and model comparison. Inference focuses on identifiable cross-strata differences, as described by Riebler and Held (2010) <doi:10.1093/biostatistics/kxp037>. Methods for handling complex survey data via the survey package are included, as described in Mercer et al. (2014) <doi:10.1016/j.spasta.2013.12.001>.

r-mvr 1.33.0
Propagated dependencies: r-statmod@1.5.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/jedazard/MVR
Licenses: GPL 3+ FSDG-compatible
Synopsis: Mean-Variance Regularization
Description:

This is a non-parametric method for joint adaptive mean-variance regularization and variance stabilization of high-dimensional data. It is suited for handling difficult problems posed by high-dimensional multivariate datasets (p >> n paradigm). Among those are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. Key features include: (i) Normalization and/or variance stabilization of the data, (ii) Computation of mean-variance-regularized t-statistics (F-statistics to follow), (iii) Generation of diverse diagnostic plots, (iv) Computationally efficient implementation using C/C++ interfacing and an option for parallel computing to enjoy a faster and easier experience in the R environment.

r-mm4lmm 3.0.3
Propagated dependencies: r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-purrr@1.2.0 r-matrix@1.7-4 r-mass@7.3-65 r-dplyr@1.1.4 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MM4LMM
Licenses: GPL 2+
Synopsis: Inference of Linear Mixed Models Through MM Algorithm
Description:

The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed models using a Min-Max (MM) algorithm (Laporte, F., Charcosset, A. & Mary-Huard, T. (2022) <doi:10.1371/journal.pcbi.1009659>).

r-matchedcc 0.1.1
Propagated dependencies: r-cli@3.6.5 r-checkmate@2.3.3 r-binom@1.1-1.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/simpar1471/matchedcc/
Licenses: GPL 3+
Synopsis: 'Stata'-Like Matched Case-Control Analysis
Description:

Calculate multiple statistics with confidence intervals for matched case-control data including risk difference, risk ratio, relative difference, and the odds ratio. Results are equivalent to those from Stata', and you can choose how to format your input data. Methods used are those described on page 56 the Stata documentation for "Epitab - Tables for Epidemologists" <https://www.stata.com/manuals/repitab.pdf>.

r-musicxml 1.0.1
Propagated dependencies: r-xml2@1.5.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=musicXML
Licenses: GPL 3
Synopsis: Data Sonification using 'musicXML'
Description:

This package provides a set of tools to facilitate data sonification and handle the musicXML format <https://usermanuals.musicxml.com/MusicXML/Content/XS-MusicXML.htm>. Several classes are defined for basic musical objects such as note pitch, note duration, note, measure and score. Moreover, sonification utilities functions are provided, e.g. to map data into musical attributes such as pitch, loudness or duration. A typical sonification workflow hence looks like: get data; map them to musical attributes; create and write the musicXML score, which can then be further processed using specialized music software (e.g. MuseScore', GuitarPro', etc.). Examples can be found in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).

r-mixak 5.8
Propagated dependencies: r-mnormt@2.1.1 r-lme4@1.1-37 r-fastghquad@1.0.1 r-colorspace@2.1-2 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://msekce.karlin.mff.cuni.cz/~komarek/
Licenses: GPL 3+
Synopsis: Multivariate Normal Mixture Models and Mixtures of Generalized Linear Mixed Models Including Model Based Clustering
Description:

This package contains a mixture of statistical methods including the MCMC methods to analyze normal mixtures. Additionally, model based clustering methods are implemented to perform classification based on (multivariate) longitudinal (or otherwise correlated) data. The basis for such clustering is a mixture of multivariate generalized linear mixed models. The package is primarily related to the publications Komárek (2009, Comp. Stat. and Data Anal.) <doi:10.1016/j.csda.2009.05.006> and Komárek and Komárková (2014, J. of Stat. Soft.) <doi:10.18637/jss.v059.i12>. It also implements methods published in Komárek and Komárková (2013, Ann. of Appl. Stat.) <doi:10.1214/12-AOAS580>, Hughes, Komárek, Bonnett, Czanner, Garcà a-Fiñana (2017, Stat. in Med.) <doi:10.1002/sim.7397>, Jaspers, Komárek, Aerts (2018, Biom. J.) <doi:10.1002/bimj.201600253> and Hughes, Komárek, Czanner, Garcà a-Fiñana (2018, Stat. Meth. in Med. Res) <doi:10.1177/0962280216674496>.

r-multgee 1.9.0
Propagated dependencies: r-vgam@1.1-13 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-gnm@1.1-5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/AnestisTouloumis/multgee
Licenses: GPL 2 GPL 3
Synopsis: GEE Solver for Correlated Nominal or Ordinal Multinomial Responses
Description:

GEE solver for correlated nominal or ordinal multinomial responses using a local odds ratios parameterization.

r-mlr3superlearner 0.1.2
Propagated dependencies: r-purrr@1.2.0 r-mlr3learners@0.13.0 r-mlr3@1.2.0 r-lgr@0.5.0 r-glmnet@4.1-10 r-data-table@1.17.8 r-cli@3.6.5 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mlr3superlearner
Licenses: GPL 3+
Synopsis: Super Learner Fitting and Prediction
Description:

An implementation of the Super Learner prediction algorithm from van der Laan, Polley, and Hubbard (2007) <doi:10.2202/1544-6115.1309 using the mlr3 framework.

r-multifunc 0.9.4
Propagated dependencies: r-purrr@1.2.0 r-mass@7.3-65 r-magrittr@2.0.4 r-dplyr@1.1.4 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://jebyrnes.github.io/multifunc/
Licenses: Expat
Synopsis: Analysis of Ecological Drivers on Ecosystem Multifunctionality
Description:

This package provides methods for the analysis of how ecological drivers affect the multifunctionality of an ecosystem based on methods of Byrnes et al. 2016 <doi:10.1111/2041-210X.12143> and Byrnes et al. 2022 <doi:10.1101/2022.03.17.484802>. Most standard methods in the literature are implemented (see vignettes) in a tidy format.

r-modopt-matlab 1.0-2
Propagated dependencies: r-roi-plugin-quadprog@1.0-1 r-roi-plugin-glpk@1.0-0 r-roi@1.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://www.finance-r.com/
Licenses: Expat
Synopsis: 'MatLab'-Style Modeling of Optimization Problems
Description:

MatLab'-Style Modeling of Optimization Problems with R'. This package provides a set of convenience functions to transform a MatLab'-style optimization modeling structure to its ROI equivalent.

r-mulgar 1.0.5
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-purrr@1.2.0 r-ggplot2@4.0.1 r-geozoo@0.5.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://dicook.github.io/mulgar/
Licenses: Expat
Synopsis: Functions for Pre-Processing Data for Multivariate Data Visualisation using Tours
Description:

This is a companion to the book Cook, D. and Laa, U. (2023) <https://dicook.github.io/mulgar_book/> "Interactively exploring high-dimensional data and models in R". by Cook and Laa. It contains useful functions for processing data in preparation for visualising with a tour. There are also several sample data sets.

r-msgarchelm 0.1.0
Propagated dependencies: r-nnfor@0.9.9 r-msgarch@2.51 r-forecast@8.24.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MSGARCHelm
Licenses: GPL 3
Synopsis: Hybridization of MS-GARCH and ELM Model
Description:

This package implements the three parallel forecast combinations of Markov Switching GARCH and extreme learning machine model along with the selection of appropriate model for volatility forecasting. For method details see Hsiao C, Wan SK (2014). <doi:10.1016/j.jeconom.2013.11.003>, Hansen BE (2007). <doi:10.1111/j.1468-0262.2007.00785.x>, Elliott G, Gargano A, Timmermann A (2013). <doi:10.1016/j.jeconom.2013.04.017>.

r-mixkernel 0.9-2
Propagated dependencies: r-vegan@2.7-2 r-reticulate@1.44.1 r-quadprog@1.5-8 r-psych@2.5.6 r-phyloseq@1.54.0 r-mixomics@6.34.0 r-matrix@1.7-4 r-markdown@2.0 r-ldrtools@0.2-2 r-ggplot2@4.0.1 r-corrplot@0.95
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://mixkernel.clementine.wf
Licenses: GPL 2+
Synopsis: Omics Data Integration Using Kernel Methods
Description:

Kernel-based methods are powerful methods for integrating heterogeneous types of data. mixKernel aims at providing methods to combine kernel for unsupervised exploratory analysis. Different solutions are provided to compute a meta-kernel, in a consensus way or in a way that best preserves the original topology of the data. mixKernel also integrates kernel PCA to visualize similarities between samples in a non linear space and from the multiple source point of view <doi:10.1093/bioinformatics/btx682>. A method to select (as well as funtions to display) important variables is also provided <doi:10.1093/nargab/lqac014>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208