Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to help visualize Major League Baseball analysis in ggplot2 and gt'. You provide team/player information and mlbplotR will transform that information into team colors, logos, or player headshots for graphics.
This package implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <DOI:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.
Build multiscalar territorial analysis based on various contexts.
Estimate diagnostic classification models (also called cognitive diagnostic models) with Stan'. Diagnostic classification models are confirmatory latent class models, as described by Rupp et al. (2010, ISBN: 978-1-60623-527-0). Automatically generate Stan code for the general loglinear cognitive diagnostic diagnostic model proposed by Henson et al. (2009) <doi:10.1007/s11336-008-9089-5> and other subtypes that introduce additional model constraints. Using the generated Stan code, estimate the model evaluate the model's performance using model fit indices, information criteria, and reliability metrics.
To test whether the missing data mechanism, in a set of incompletely observed data, is one of missing completely at random (MCAR). For detailed description see Jamshidian, M. Jalal, S., and Jansen, C. (2014). "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)", Journal of Statistical Software, 56(6), 1-31. <https://www.jstatsoft.org/v56/i06/> <doi:10.18637/jss.v056.i06>.
Enhances mlexperiments <https://CRAN.R-project.org/package=mlexperiments> with additional machine learning ('ML') learners. The package provides R6-based learners for the following algorithms: glmnet <https://CRAN.R-project.org/package=glmnet>, ranger <https://CRAN.R-project.org/package=ranger>, xgboost <https://CRAN.R-project.org/package=xgboost>, and lightgbm <https://CRAN.R-project.org/package=lightgbm>. These can be used directly with the mlexperiments R package.
Response Surface Designs (RSDs) involving factors not all at same levels are called Mixed Level RSDs (or Asymmetric RSDs). In many practical situations, RSDs with asymmetric levels will be more suitable as it explores more regions in the design space. (J.S. Mehta and M.N. Das (1968) <doi:10.2307/1267046>. "Asymmetric rotatable designs and orthogonal transformations").This package contains function named ATORDs_I() for generating asymmetric third order rotatable designs (ATORDs) based on third order designs given by Das and Narasimham (1962). Function ATORDs_II() generates asymmetric third order rotatable designs developed using t-design of unequal set sizes, which are smaller in size as compared to design generated by function ATORDs_I(). In general, third order rotatable designs can be classified into two classes viz., designs that are suitable for sequential experimentation and designs for non-sequential experimentation. The sequential experimentation approach involves conducting the trials step by step whereas, in the non-sequential experimentation approach, the entire runs are executed in one go (M. N. Das and V. Narasimham (1962) <doi:10.1214/AOMS/1177704374>. "Construction of Rotatable Designs through Balanced Incomplete Block Designs"). ATORDs_I() and ATORDs_II() functions generate non-sequential asymmetric third order designs. Function named SeqTORD() generates symmetric sequential third order design in blocks and also gives G-efficiency of the given design. Function named Asymseq() generates asymmetric sequential third order designs in blocks (M. Hemavathi, Eldho Varghese, Shashi Shekhar and Seema Jaggi (2020) <doi:10.1080/02664763.2020.1864817>. "Sequential asymmetric third order rotatable designs (SATORDs)"). In response surface design, situations may arise in which some of the factors are qualitative in nature (Jyoti Divecha and Bharat Tarapara (2017) <doi:10.1080/08982112.2016.1217338>. "Small, balanced, efficient, optimal, and near rotatable response surface designs for factorial experiments asymmetrical in some quantitative, qualitative factors"). The Function named QualRSD() generates second order design with qualitative factors along with their D-efficiency and G-efficiency. The function named RotatabilityQ() calculates a measure of rotatability (measure Q, 0 <= Q <= 1) given by Draper and Pukelshiem(1990) for given a design based on a second order model, (Norman R. Draper and Friedrich Pukelsheim(1990) <doi:10.1080/00401706.1990.10484635>. "Another look at rotatability").
Microbial growth is often measured by growth curves i.e. a table of population sizes and times of measurements. This package allows to use such growth curve data to determine the duration of "microbial lag phase" i.e. the time needed for microbes to restart divisions. It implements the most commonly used methods to calculate the lag duration, these methods are discussed and described in Opalek et.al. 2022. Citation: Smug, B. J., Opalek, M., Necki, M., & Wloch-Salamon, D. (2024). Microbial lag calculator: A shiny-based application and an R package for calculating the duration of microbial lag phase. Methods in Ecology and Evolution, 15, 301รข 307 <doi:10.1111/2041-210X.14269>.
This package provides a Comprehensive tool for almost all existing multiple testing methods for multiple families. The package summarizes the existing methods for multiple families multiple testing procedures (MTPs) such as double FDR, group Benjamini-Hochberg (GBH) procedure and average FDR controlling procedure. The package also provides some novel multiple testing procedures using selective inference idea.
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.
Computes matching algorithms quickly using Rcpp. Implements the Gale-Shapley Algorithm to compute the stable matching for two-sided markets, such as the stable marriage problem and the college-admissions problem. Implements Irving's Algorithm for the stable roommate problem. Implements the top trading cycle algorithm for the indivisible goods trading problem.
This package provides two important functions for producing Gain chart and Lift chart for any classification model.
You can use the set of wrappers for analytical schemata to reduce the effort in writing machine-readable data. The set of all-in-one wrappers will cover widely used functions from data analysis packages.
This package provides a framework to perform soft clustering using simplex-structured matrix factorisation (SSMF). The package contains a set of functions for determining the optimal number of prototypes, the optimal algorithmic parameters, the estimation confidence intervals and the diversity of clusters. Abdolali, Maryam & Gillis, Nicolas (2020) <doi:10.1137/20M1354982>.
This package provides real & simulated datasets containing time-series traffic observations and additional information pertaining to Loop 1 "Mopac" located in Austin, Texas.
The main objective of this package is to support the definition of Moodle elements taking advantage of the power that R offers. In this first version, it allows the definition of quizzes to be included in the question bank.
The Washington Metropolitan Area Transit Authority is a government agency operating light rail and passenger buses in the Washington D.C. area. With a free developer account, access their Metro Transparent Data Sets API <https://developer.wmata.com/> to return data frames of transit data for easy analysis.
Allows practitioners and researchers a wholesale approach for deriving magnitude-based inferences from raw data. A major goal of mbir is to programmatically detect appropriate statistical tests to run in lieu of relying on practitioners to determine correct stepwise procedures independently.
Toolbox and shiny application to help researchers design movement ecology studies, focusing on two key objectives: estimating home range areas, and estimating fine-scale movement behavior, specifically speed and distance traveled. It provides interactive simulations and methodological guidance to support study planning and decision-making. The application is described in Silva et al. (2023) <doi:10.1111/2041-210X.14153>.
Mask ranges based on expert knowledge or remote sensing layers. These tools can be combined to quantitatively and reproducibly generate a new map or to update an existing map. Methods include expert opinion and data-driven tools to generate thresholds for binary masks.
Simplifies Brazilian names phonetically using a custom metaphoneBR algorithm that preserves ending vowels. Useful for name matching processing preserving gender information carried generally by ending vowels in Portuguese. Mation (2025) <doi:10.6082/uchicago.15104>.
Estimate and test inter-generational social mobility effect on an outcome with cross-sectional or longitudinal data.
This package provides an RStudio extension with a chat interface for an AI coding agent to help users with R programming tasks.
This package implements likelihood-based estimation and diagnostics for multi-type recurrent event data with dynamic risk that depends on prior events and accommodates terminating events. Methods are described in Ghosh, Chan, Younes and Davis (2023) "A Dynamic Risk Model for Multitype Recurrent Events" <doi:10.1093/aje/kwac213>.