_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-mr-rgm 0.0.5
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/bitansa/MR.RGM
Licenses: GPL 3+
Synopsis: Multivariate Bidirectional Mendelian Randomization Networks
Description:

Addressing a central challenge encountered in Mendelian randomization (MR) studies, where MR primarily focuses on discerning the effects of individual exposures on specific outcomes and establishes causal links between them. Using a network-based methodology, the intricacy involving interdependent outcomes due to numerous factors has been tackled through this routine. Based on Ni et al. (2018) <doi:10.1214/17-BA1087>, MR.RGM extends to a broader exploration of the causal landscape by leveraging on network structures and involves the construction of causal graphs that capture interactions between response variables and consequently between responses and instrument variables. The resulting Graph visually represents these causal connections, showing directed edges with effect sizes labeled. MR.RGM facilitates the navigation of various data availability scenarios effectively by accommodating three input formats, i.e., individual-level data and two types of summary-level data. In the process, causal effects, adjacency matrices, and other essential parameters of the complex biological networks, are estimated. Besides, MR.RGM provides uncertainty quantification for specific network structures among response variables.

r-mcmcr 0.6.2
Propagated dependencies: r-universals@0.0.5 r-tibble@3.3.0 r-term@0.3.6 r-purrr@1.2.0 r-nlist@0.4.0 r-lifecycle@1.0.4 r-generics@0.1.4 r-extras@0.8.0 r-coda@0.19-4.1 r-chk@0.10.0 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/poissonconsulting/mcmcr
Licenses: Expat
Synopsis: Manipulate MCMC Samples
Description:

This package provides functions and classes to store, manipulate and summarise Monte Carlo Markov Chain (MCMC) samples. For more information see Brooks et al. (2011) <isbn:978-1-4200-7941-8>.

r-mrc 0.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/k-dettloff/mRc
Licenses: Expat
Synopsis: Multi-Visit Closed Population Mark-Recapture Estimates
Description:

Compute bootstrap confidence intervals for the adjusted Schnabel and Schumacher-Eschmeyer multi-visit mark-recapture estimators based on Dettloff (2023) <doi:10.1016/j.fishres.2023.106756>.

r-mmequiv 1.0.0
Propagated dependencies: r-rlang@1.1.6 r-lifecycle@1.0.4 r-httr2@1.2.1 r-glue@1.8.0 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://kennethataylor.github.io/mmequiv/
Licenses: GPL 3+
Synopsis: Calculate Standardized Morphine Milligram Equivalent Doses
Description:

Calculate morphine milligram equivalents (MME) for opioid dose comparison using standardized methods. Can directly call the NIH HEAL MME Online Calculator <https://research-mme.wakehealth.edu/api> API or replicate API calculations on the user's local machine from the comfort of R'. Creation of the NIH HEAL MME Online Calculator and the MME calculations implemented in this package are described in Adams MCB, Sward KA, Perkins ML, Hurley RW (2025) <doi:10.1097/j.pain.0000000000003529>.

r-makepalette 0.1.2
Propagated dependencies: r-terra@1.8-86 r-prismatic@1.1.2 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/musajajorge/makePalette
Licenses: GPL 3
Synopsis: Make Palette
Description:

This package provides functions that allow you to create your own color palette from an image, using mathematical algorithms.

r-mverse 0.2.3
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-stringr@1.6.0 r-rlang@1.1.6 r-rdpack@2.6.4 r-multiverse@0.6.2 r-magrittr@2.0.4 r-igraph@2.2.1 r-ggupset@0.4.1 r-ggraph@2.2.2 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mverseanalysis/mverse/
Licenses: GPL 3+
Synopsis: Tidy Multiverse Analysis Made Simple
Description:

Extends multiverse package (Sarma A., Kale A., Moon M., Taback N., Chevalier F., Hullman J., Kay M., 2021) <doi:10.31219/osf.io/yfbwm>, which allows users perform to create explorable multiverse analysis in R. This extension provides an additional level of abstraction to the multiverse package with the aim of creating user friendly syntax to researchers, educators, and students in statistics. The mverse syntax is designed to allow piping and takes hints from the tidyverse grammar. The package allows users to define and inspect multiverse analysis using familiar syntax in R.

r-montecarlo 1.0.6
Propagated dependencies: r-snowfall@1.84-6.3 r-snow@0.4-4 r-rlecuyer@0.3-8 r-reshape@0.8.10 r-codetools@0.2-20 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://github.com/FunWithR/MonteCarlo
Licenses: GPL 2
Synopsis: Automatic Parallelized Monte Carlo Simulations
Description:

Simplifies Monte Carlo simulation studies by automatically setting up loops to run over parameter grids and parallelising the Monte Carlo repetitions. It also generates LaTeX tables.

r-mbsgs 1.2.0
Propagated dependencies: r-truncnorm@1.0-9 r-mnormt@2.1.1 r-mgcv@1.9-4 r-mcmcpack@1.7-1 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MBSGS
Licenses: GPL 2+
Synopsis: Multivariate Bayesian Sparse Group Selection with Spike and Slab
Description:

An implementation of a Bayesian sparse group model using spike and slab priors in a regression context. It is designed for regression with a multivariate response variable, but also provides an implementation for univariate response.

r-mix 1.0-13
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mix
Licenses: FSDG-compatible
Synopsis: Estimation/Multiple Imputation for Mixed Categorical and Continuous Data
Description:

Estimation/multiple imputation programs for mixed categorical and continuous data.

r-minfactorial 0.1.0
Propagated dependencies: r-fmc@1.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=minFactorial
Licenses: GPL 3
Synopsis: All Possible Minimally Changed Factorial Run Orders
Description:

In many agricultural, engineering, industrial, post-harvest and processing experiments, the number of factor level changes and hence the total number of changes is of serious concern as such experiments may consists of hard-to-change factors where it is physically very difficult to change levels of some factors or sometime such experiments may require normalization time to obtain adequate operating condition. For this reason, run orders that offer the minimum number of factor level changes and at the same time minimize the possible influence of systematic trend effects on the experimentation have been sought. Factorial designs with minimum changes in factors level may be preferred for such situations as these minimally changed run orders will minimize the cost of the experiments. For method details see, Bhowmik, A.,Varghese, E., Jaggi, S. and Varghese, C. (2017)<doi:10.1080/03610926.2016.1152490>.This package used to construct all possible minimally changed factorial run orders for different experimental set ups along with different statistical criteria to measure the performance of these designs. It consist of the function minFactDesign().

r-msclust 1.0.4
Propagated dependencies: r-psych@2.5.6 r-mvtnorm@1.3-3 r-mnormt@2.1.1 r-mclust@6.1.2 r-matrix@1.7-4 r-gtools@3.9.5 r-ggplot2@4.0.1 r-ggally@2.4.0 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MSclust
Licenses: GPL 2+
Synopsis: Multiple-Scaled Clustering
Description:

Model based clustering using the multivariate multiple Scaled t (MST) and multivariate multiple scaled contaminated normal (MSCN) distributions. The MST is an extension of the multivariate Student-t distribution to include flexible tail behaviors, Forbes, F. & Wraith, D. (2014) <doi:10.1007/s11222-013-9414-4>. The MSCN represents a heavy-tailed generalization of the multivariate normal (MN) distribution to model elliptical contoured scatters in the presence of mild outliers (also referred to as "bad" points) and automatically detect bad points, Punzo, A. & Tortora, C. (2021) <doi:10.1177/1471082X19890935>.

r-mvopr 2.0.0
Propagated dependencies: r-rrpack@0.1-14 r-ncvreg@3.16.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://arxiv.org/abs/2503.16807
Licenses: GPL 2 GPL 3
Synopsis: Multi-View Orthogonal Projection Regression for Multi-Modality Integration
Description:

This package implements the MVOPR (Multi-View Orthogonal Projection Regression) method for robust variable selection and integration of multi-modality data.

r-mmeln 1.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mmeln
Licenses: GPL 3
Synopsis: Estimation of Multinormal Mixture Distribution
Description:

Fit multivariate mixture of normal distribution using covariance structure.

r-mlpugs 0.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/bearloga/MLPUGS
Licenses: Expat
Synopsis: Multi-Label Prediction Using Gibbs Sampling (and Classifier Chains)
Description:

An implementation of classifier chains (CC's) for multi-label prediction. Users can employ an external package (e.g. randomForest', C50'), or supply their own. The package can train a single set of CC's or train an ensemble of CC's -- in parallel if running in a multi-core environment. New observations are classified using a Gibbs sampler since each unobserved label is conditioned on the others. The package includes methods for evaluating the predictions for accuracy and aggregating across iterations and models to produce binary or probabilistic classifications.

r-multitool 0.1.5
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rstudioapi@0.17.1 r-rlang@1.1.6 r-purrr@1.2.0 r-performance@0.15.2 r-parameters@0.28.3 r-moments@0.14.1 r-lme4@1.1-37 r-glue@1.8.0 r-furrr@0.3.1 r-dplyr@1.1.4 r-diagrammer@1.0.11 r-correlation@0.8.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://ethan-young.github.io/multitool/
Licenses: Expat
Synopsis: Run Multiverse Style Analyses
Description:

Run the same analysis over a range of arbitrary data processing decisions. multitool provides an interface for creating alternative analysis pipelines and turning them into a grid of all possible pipelines. Using this grid as a blueprint, you can model your data across all possible pipelines and summarize the results.

r-madpop 1.1.7
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mlysy/MADPop
Licenses: GPL 3
Synopsis: MHC Allele-Based Differencing Between Populations
Description:

This package provides tools for the analysis of population differences using the Major Histocompatibility Complex (MHC) genotypes of samples having a variable number of alleles (1-4) recorded for each individual. A hierarchical Dirichlet-Multinomial model on the genotype counts is used to pool small samples from multiple populations for pairwise tests of equality. Bayesian inference is implemented via the rstan package. Bootstrapped and posterior p-values are provided for chi-squared and likelihood ratio tests of equal genotype probabilities.

r-mtps 1.0.2
Propagated dependencies: r-rpart@4.1.24 r-mass@7.3-65 r-glmnet@4.1-10 r-e1071@1.7-16 r-class@7.3-23
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://doi.org/10.1093/bioinformatics/btz531
Licenses: GPL 2+
Synopsis: Multi-Task Prediction using Stacking Algorithms
Description:

Simultaneous multiple outcomes prediction based on revised stacking algorithms, which enables the integration of information from predictions of individual models. An implementation of methodologies proposed in our paper: Li Xing, Mary L Lesperance, Xuekui Zhang. (2019) Bioinformatics, "Simultaneous prediction of multiple outcomes using revised stacking algorithms" <doi:10.1093/bioinformatics/btz531>.

r-matrixeqtl 2.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
Licenses: LGPL 3
Synopsis: Matrix eQTL: Ultra Fast eQTL Analysis via Large Matrix Operations
Description:

Matrix eQTL is designed for fast eQTL analysis on large datasets. Matrix eQTL can test for association between genotype and gene expression using linear regression with either additive or ANOVA genotype effects. The models can include covariates to account for factors as population stratification, gender, and clinical variables. It also supports models with heteroscedastic and/or correlated errors, false discovery rate estimation and separate treatment of local (cis) and distant (trans) eQTLs. For more details see Shabalin (2012) <doi:10.1093/bioinformatics/bts163>.

r-mcid 0.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MCID
Licenses: GPL 2+
Synopsis: Estimating the Minimal Clinically Important Difference
Description:

Apply the marginal classification method to achieve the purpose of providing the point and interval estimates for the minimal clinically important difference based on the classical anchor-based method. For more details of the methodology, please see Zehua Zhou, Leslie J. Bisson and Jiwei Zhao (2021) <arXiv:2108.11589>.

r-multimedia 0.2.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tidygraph@1.3.1 r-summarizedexperiment@1.40.0 r-s4vectors@0.48.0 r-rlang@1.1.6 r-ranger@0.17.0 r-purrr@1.2.0 r-progress@1.2.3 r-phyloseq@1.54.0 r-patchwork@1.3.2 r-minilnm@0.1.0 r-mass@7.3-65 r-glue@1.8.0 r-glmnetutils@1.1.9 r-ggplot2@4.0.1 r-formula-tools@1.7.1 r-fansi@1.0.7 r-dplyr@1.1.4 r-cli@3.6.5 r-brms@2.23.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://krisrs1128.github.io/multimedia/
Licenses: CC0
Synopsis: Multimodal Mediation Analysis
Description:

Multimodal mediation analysis is an emerging problem in microbiome data analysis. Multimedia make advanced mediation analysis techniques easy to use, ensuring that all statistical components are transparent and adaptable to specific problem contexts. The package provides a uniform interface to direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis. More details are available in Jiang et al. (2024) "multimedia: Multimodal Mediation Analysis of Microbiome Data" <doi:10.1101/2024.03.27.587024>.

r-mixedfact 0.1.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mixedfact
Licenses: GPL 3
Synopsis: Generate and Analyze Mixed-Level Blocked Factorial Designs
Description:

Generates blocked designs for mixed-level factorial experiments for a given block size. Internally, it uses finite-field based, collapsed, and heuristic methods to construct block structures that minimize confounding between block effects and factorial effects. The package creates the full treatment combination table, partitions runs into blocks, and computes detailed confounding diagnostics for main effects and two-factor interactions. It also checks orthogonal factorial structure (OFS) and computes efficiencies of factorial effects using the methods of Nair and Rao (1948) <doi:10.1111/j.2517-6161.1948.tb00005.x>. When OFS is not satisfied but the design has equal treatment replications and equal block sizes, a general method based on the C-matrix and custom contrast vectors is used to compute efficiencies. The output includes the generated design, finite-field metadata, confounding summaries, OFS diagnostics, and efficiency results.

r-mipplot 0.3.1
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.6.0 r-showtextdb@3.0 r-showtext@0.9-7 r-shinywidgets@0.9.0 r-shinyalert@3.1.0 r-shiny-i18n@0.3.0 r-shiny@1.11.1 r-rlang@1.1.6 r-reshape2@1.4.5 r-reshape@0.8.10 r-readxl@1.4.5 r-readr@2.1.6 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mipplot
Licenses: Expat
Synopsis: An Open-Source Tool for Visualization of Climate Mitigation Scenarios
Description:

Generic functions to produce area/bar/box/line plots of data following IAMC (Integrated Assessment Modeling Consortium) submission format.

r-mfd 1.0.7
Propagated dependencies: r-vegan@2.7-2 r-rstatix@0.7.3 r-reshape2@1.4.5 r-patchwork@1.3.2 r-hmisc@5.2-4 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-geometry@0.5.2 r-gawdis@0.1.5 r-factominer@2.12 r-dendextend@1.19.1 r-cluster@2.1.8.1 r-betapart@1.6.1 r-ape@5.8-1 r-ade4@1.7-23
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cmlmagneville.github.io/mFD/
Licenses: GPL 2
Synopsis: Compute and Illustrate the Multiple Facets of Functional Diversity
Description:

Computing functional traits-based distances between pairs of species for species gathered in assemblages allowing to build several functional spaces. The package allows to compute functional diversity indices assessing the distribution of species (and of their dominance) in a given functional space for each assemblage and the overlap between assemblages in a given functional space, see: Chao et al. (2018) <doi:10.1002/ecm.1343>, Maire et al. (2015) <doi:10.1111/geb.12299>, Mouillot et al. (2013) <doi:10.1016/j.tree.2012.10.004>, Mouillot et al. (2014) <doi:10.1073/pnas.1317625111>, Ricotta and Szeidl (2009) <doi:10.1016/j.tpb.2009.10.001>. Graphical outputs are included. Visit the mFD website for more information, documentation and examples.

r-molhd 0.2
Propagated dependencies: r-fields@17.1 r-arrangements@1.1.9
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MOLHD
Licenses: LGPL 2.0+
Synopsis: Multiple Objective Latin Hypercube Design
Description:

Generate the optimal maximin distance, minimax distance (only for low dimensions), and maximum projection designs within the class of Latin hypercube designs efficiently for computer experiments. Generate Pareto front optimal designs for each two of the three criteria and all the three criteria within the class of Latin hypercube designs efficiently. Provide criterion computing functions. References of this package can be found in Morris, M. D. and Mitchell, T. J. (1995) <doi:10.1016/0378-3758(94)00035-T>, Lu Lu and Christine M. Anderson-CookTimothy J. Robinson (2011) <doi:10.1198/Tech.2011.10087>, Joseph, V. R., Gul, E., and Ba, S. (2015) <doi:10.1093/biomet/asv002>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208