Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Researchers often have expectations about the relations between means of different groups or standardized regression coefficients; using informative hypothesis testing to incorporate these expectations into the analysis through order constraints increases statistical power Vanbrabant and Rosseel (2020) <doi:10.4324/9780429273872-14>. Another valuable tool, the Bayes factor, can evaluate evidence for multiple hypotheses without concerns about multiple testing, and can be used in Bayesian updating Hoijtink, Mulder, van Lissa & Gu (2019) <doi:10.1037/met0000201>. The bain R package enables informative hypothesis testing using the Bayes factor. The mmibain package provides shiny web applications based on bain'. The RepliCrisis() function launches a shiny card game to simulate the evaluation of replication studies while the mmibain() function launches a shiny application to fit Bayesian informative hypotheses evaluation models from bain'.
Multivariate ARIMA and ARIMA-X estimation using Spliid's algorithm (marima()) and simulation (marima.sim()).
Defines the classes used to explore, cluster and visualize distance matrices, especially those arising from binary data. See Abrams and colleagues, 2021, <doi:10.1093/bioinformatics/btab037>.
The goal of Momocs is to provide a complete, convenient, reproducible and open-source toolkit for 2D morphometrics. It includes most common 2D morphometrics approaches on outlines, open outlines, configurations of landmarks, traditional morphometrics, and facilities for data preparation, manipulation and visualization with a consistent grammar throughout. It allows reproducible, complex morphometrics analyses and other morphometrics approaches should be easy to plug in, or develop from, on top of this canvas. Companion paper is published in JSS Bonhomme V, Picq S, Gaucherel C and Claude J (2014) <doi:10.18637/jss.v056.i13>. Now superseded by Momocs2 and the MomX ecosystem. Momocs should be considered retired and will no longer be supported someday.
Cooperative learning combines the usual squared error loss of predictions with an agreement penalty to encourage the predictions from different data views to agree. By varying the weight of the agreement penalty, we get a continuum of solutions that include the well-known early and late fusion approaches. Cooperative learning chooses the degree of agreement (or fusion) in an adaptive manner, using a validation set or cross-validation to estimate test set prediction error. In the setting of cooperative regularized linear regression, the method combines the lasso penalty with the agreement penalty (Ding, D., Li, S., Narasimhan, B., Tibshirani, R. (2021) <doi:10.1073/pnas.2202113119>).
Comprehensively identifying states and state-like actors is difficult. This package provides data on states and state-like entities in the international system across time. The package combines and cross-references several existing datasets consistent with the aims and functions of the manydata package. It also includes functions for identifying state references in text, and for generating fictional state names.
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes (Dombry, Engelke and Oesting, 2016, <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991<doi:10.1214/aos/1176348396>). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987)<doi:10.1080/01621459.1987.10478458>. The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.
Fully parametric Bayesian multiple imputation framework for massive multivariate data of different variable types as seen in Demirtas, H. (2017) <doi:10.1007/978-981-10-3307-0_8>.
Various tools for microeconomic analysis and microeconomic modelling, e.g. estimating quadratic, Cobb-Douglas and Translog functions, calculating partial derivatives and elasticities of these functions, and calculating Hessian matrices, checking curvature and preparing restrictions for imposing monotonicity of Translog functions.
With the deprecation of mocking capabilities shipped with testthat as of edition 3 it is left to third-party packages to replace this functionality, which in some test-scenarios is essential in order to run unit tests in limited environments (such as no Internet connection). Mocking in this setting means temporarily substituting a function with a stub that acts in some sense like the original function (for example by serving a HTTP response that has been cached as a file). The only exported function with_mock() is modeled after the eponymous testthat function with the intention of providing a drop-in replacement.
This package performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2022), <arXiv:2208.14721>.
This package implements the three parallel forecast combinations of Markov Switching GARCH and extreme learning machine model along with the selection of appropriate model for volatility forecasting. For method details see Hsiao C, Wan SK (2014). <doi:10.1016/j.jeconom.2013.11.003>, Hansen BE (2007). <doi:10.1111/j.1468-0262.2007.00785.x>, Elliott G, Gargano A, Timmermann A (2013). <doi:10.1016/j.jeconom.2013.04.017>.
This package implements the Mittag-Leffler function, distribution, random variate generation, and estimation. Based on the Laplace-Inversion algorithm by Garrappa, R. (2015) <doi:10.1137/140971191>.
This package implements random number generation, plotting, and estimation algorithms for the two-parameter one-sided and two-sided M-Wright (Mainardi-Wright) family. The M-Wright distributions naturally generalize the widely used one-sided (Airy and half-normal or half-Gaussian) and symmetric (Airy and Gaussian or normal) models. These are widely studied in time-fractional differential equations. References: Cahoy and Minkabo (2017) <doi:10.3233/MAS-170388>; Cahoy (2012) <doi:10.1007/s00180-011-0269-x>; Cahoy (2012) <doi:10.1080/03610926.2010.543299>; Cahoy (2011); Mainardi, Mura, and Pagnini (2010) <doi:10.1155/2010/104505>.
This package implements an Integer Programming-based method for optimising genetic gain in polyclonal selection, where the goal is to select a group of genotypes that jointly meet multi-trait selection criteria. The method uses predictors of genotypic effects obtained from the fitting of mixed models. Its application is demonstrated with grapevine data, but is applicable to other species and breeding contexts. For more details see Surgy et al. (2025) <doi:10.1007/s00122-025-04885-0>.
It offers random-forest-based functions to impute clustered incomplete data. The package is tailored for but not limited to imputing multitissue expression data, in which a gene's expression is measured on the collected tissues of an individual but missing on the uncollected tissues.
This package provides a comprehensive and computationally fast framework to analyze high dimensional data associated with an experimental design based on Multiple ANOVAs (MultANOVA). It includes testing the overall significance of terms in the model, post-hoc analyses of significant terms and variable selection. Details may be found in Mahieu, B., & Cariou, V. (2025). MultANOVA Followed by Post Hoc Analyses for Designed Highâ Dimensional Data: A Comprehensive Framework That Outperforms ASCA, rMANOVA, and VASCA. Journal of Chemometrics, 39(7). <doi:10.1002/cem.70039>.
This package provides methods and classes for adding m-activation ("multiplicative activation") layers to MLR or multivariate logistic regression models. M-activation layers created in this library detect and add input interaction (polynomial) effects into a predictive model. M-activation can detect high-order interactions -- a traditionally non-trivial challenge. Details concerning application, methodology, and relevant survey literature can be found in this library's vignette, "About.".
Estimating GARCH-MIDAS (MIxed-DAta-Sampling) models (Engle, Ghysels, Sohn, 2013, <doi:10.1162/REST_a_00300>) and related statistical inference, accompanying the paper "Two are better than one: Volatility forecasting using multiplicative component GARCH models" by Conrad and Kleen (2020, <doi:10.1002/jae.2742>). The GARCH-MIDAS model decomposes the conditional variance of (daily) stock returns into a short- and long-term component, where the latter may depend on an exogenous covariate sampled at a lower frequency.
The latest guidelines proposed by International Expert Consensus are used for the clinical diagnosis of Metabolic Associated Fatty Liver Disease (MAFLD). The new definition takes hepatic steatosis (determined by elastography or histology or biomarker-based fatty liver index) as a major criterion. In addition, race, gender, body mass index (BMI), waist circumference (WC), fasting plasma glucose (FPG), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDLC), homeostatic model assessment of insulin resistance (HOMAIR), high sensitive c-reactive protein (HsCRP) for the diagnosis of MAFLD. Each parameter has to be interpreted based on the proposed cut-offs, making the diagnosis slightly complex and error-prone. This package is developed by incorporating the latest international expert consensus guidelines, and it will aid in the easy and quick diagnosis of MAFLD based on FibroScan in busy healthcare settings and also for research purposes. The new definition for MAFLD as per the International Consensus Statement is described by Eslam M et al (2020). <doi:10.1016/j.jhep.2020.03.039>.
Implementing various things including functions for LaTeX tables, the Kalman filter, QQ-plots with simulation-based confidence intervals, linear regression diagnostics, web scraping, development tools, relative risk and odds rati, GARCH(1,1) Forecasting.
PDF is a standard file format for laying out text and images in documents. At its core, these documents are sequences of objects defined in plain text. This package allows for the creation of PDF documents at a very low level without any library or graphics device dependencies.
This package provides functions for reading (tab, csv, Bruker fid, Ciphergen XML, mzXML, mzML, imzML, Analyze 7.5, CDF, mMass MSD) and writing (tab, csv, mMass MSD, mzML, imzML) different file formats of mass spectrometry data into/from MALDIquant objects.