Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
MAle Lineage ANalysis by simulating genealogies backwards and imposing short tandem repeats (STR) mutations forwards. Intended for forensic Y chromosomal STR (Y-STR) haplotype analyses. Numerous analyses are possible, e.g. number of matches and meiotic distance to matches. Refer to papers mentioned in citation("malan") (DOI's: <doi:10.1371/journal.pgen.1007028>, <doi:10.21105/joss.00684> and <doi:10.1016/j.fsigen.2018.10.004>).
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.
This package provides functions for estimating structural equation models using instrumental variables.
Multiscale moving sum procedure for the detection of changes in expectation in univariate sequences. References - Multiscale change point detection via gradual bandwidth adjustment in moving sum processes (2021+), Tijana Levajkovic and Michael Messer.
Evolutionary black box optimization algorithms building on the bbotk package. miesmuschel offers both ready-to-use optimization algorithms, as well as their fundamental building blocks that can be used to manually construct specialized optimization loops. The Mixed Integer Evolution Strategies as described by Li et al. (2013) <doi:10.1162/EVCO_a_00059> can be implemented, as well as the multi-objective optimization algorithms NSGA-II by Deb, Pratap, Agarwal, and Meyarivan (2002) <doi:10.1109/4235.996017>.
This package provides a latent variable model based on factor analytic and mixture of experts models, designed to infer food intake from multiple biomarkers data. The model is framed within a Bayesian hierarchical framework, which provides flexibility to adapt to different biomarker distributions and facilitates inference on food intake from biomarker data alone, along with the associated uncertainty. Details are in D'Angelo, et al. (2020) <arXiv:2006.02995>.
This package contains functions that allow Bayesian meta-analysis (1) with binomial data, counts(y) and total counts (n) or, (2) with user-supplied point estimates and associated variances. Case (1) provides an analysis based on the logit transformation of the sample proportion. This methodology is also appropriate for combining data from sample surveys and related sources. The functions can calculate the corresponding similarity matrix. More details can be found in Cahoy and Sedransk (2023), Cahoy and Sedransk (2022) <doi:10.1007/s42519-018-0027-2>, Evans and Sedransk (2001) <doi:10.1093/biomet/88.3.643>, and Malec and Sedransk (1992) <doi:10.1093/biomet/79.3.593>.
This package provides a hybrid modeling framework combining Support Vector Regression (SVR) with metaheuristic optimization algorithms, including the Archimedes Optimization Algorithm (AO) (Hashim et al. (2021) <doi:10.1007/s10489-020-01893-z>), Coot Bird Optimization (CBO) (Naruei & Keynia (2021) <doi:10.1016/j.eswa.2021.115352>), and their hybrid (AOCBO), as well as several others such as Harris Hawks Optimization (HHO) (Heidari et al. (2019) <doi:10.1016/j.future.2019.02.028>), Gray Wolf Optimizer (GWO) (Mirjalili et al. (2014) <doi:10.1016/j.advengsoft.2013.12.007>), Ant Lion Optimization (ALO) (Mirjalili (2015) <doi:10.1016/j.advengsoft.2015.01.010>), and Enhanced Harris Hawk Optimization with Coot Bird Optimization (EHHOCBO) (Cui et al. (2023) <doi:10.32604/cmes.2023.026019>). The package enables automatic tuning of SVR hyperparameters (cost, gamma, and epsilon) to enhance prediction performance. Suitable for regression tasks in domains such as renewable energy forecasting and hourly data prediction. For more details about implementation and parameter bounds see: Setiawan et al. (2021) <doi:10.1016/j.procs.2020.12.003> and Liu et al. (2018) <doi:10.1155/2018/6076475>.
This package provides a likelihood-based approach to modeling species distributions using presence-only data. In contrast to the popular software program MAXENT, this approach yields estimates of the probability of occurrence, which is a natural descriptor of a species distribution.
This package provides a flexible framework for power analysis using Monte Carlo simulation for settings in which considerations of the correlations between predictors are important. Users can set up a data generative model that preserves dependence structures among predictors given existing data (continuous, binary, or ordinal). Users can also generate power curves to assess the trade-offs between sample size, effect size, and power of a design. This package includes several statistical models common in environmental mixtures studies. For more details and tutorials, see Nguyen et al. (2022) <arXiv:2209.08036>.
This package provides tools for spectral clustering of weighted directed networks using motif adjacency matrices. Methods perform well on large and sparse networks, and random sampling methods for generating weighted directed networks are also provided. Based on methodology detailed in Underwood, Elliott and Cucuringu (2020) <arXiv:2004.01293>.
The temporal relationship between motor neurons can offer explanations for neural strategies. We combined functions to reduce neuron action potential discharge data and analyze it for short-term, time-domain synchronization. Even more so, motoRneuron combines most available methods for the determining cross correlation histogram peaks and most available indices for calculating synchronization into simple functions. See Nordstrom, Fuglevand, and Enoka (1992) <doi:10.1113/jphysiol.1992.sp019244> for a more thorough introduction.
Run the same analysis over a range of arbitrary data processing decisions. multitool provides an interface for creating alternative analysis pipelines and turning them into a grid of all possible pipelines. Using this grid as a blueprint, you can model your data across all possible pipelines and summarize the results.
This package implements several methods to meta-analyze studies that report the sample median of the outcome. The methods described by McGrath et al. (2019) <doi:10.1002/sim.8013>, Ozturk and Balakrishnan (2020) <doi:10.1002/sim.8738>, and McGrath et al. (2020a) <doi:10.1002/bimj.201900036> can be applied to directly meta-analyze the median or difference of medians between groups. Additionally, a number of methods (e.g., McGrath et al. (2020b) <doi:10.1177/0962280219889080>, Cai et al. (2021) <doi:10.1177/09622802211047348>, and McGrath et al. (2023) <doi:10.1177/09622802221139233>) are implemented to estimate study-specific (difference of) means and their standard errors in order to estimate the pooled (difference of) means. Methods for meta-analyzing median survival times (McGrath et al. (2025) <doi:10.48550/arXiv.2503.03065>) are also implemented. See McGrath et al. (2024) <doi:10.1002/jrsm.1686> for a detailed guide on using the package.
Analyses the stability and structural behaviour of export and import patterns across multiple countries using a Markov chain modelling framework. Constructs transition probability matrices to quantify changes in trade shares between successive periods, thereby capturing persistence, structural shifts, and inter-country interdependence in trade performance. By iteratively generating expected trade distributions over time, the approach facilitates assessment of stability, long-run equilibrium tendencies, and comparative dynamics in longitudinal trade data, providing a rigorous tool for empirical analysis of exportâ import behaviour. Methodological foundations follow standard Markov chain theory as described in Gagniuc (2017) <Doi:10.1002/9781119387596>.
This package performs meta-analysis and meta-regression using standard and robust methods with confidence intervals based on the profile likelihood. Robust methods are based on alternative distributions for the random effect, either the t-distribution (Lee and Thompson, 2008 <doi:10.1002/sim.2897> or Baker and Jackson, 2008 <doi:10.1007/s10729-007-9041-8>) or mixtures of normals (Beath, 2014 <doi:10.1002/jrsm.1114>).
Constructing matrices for quick prototyping can be a nuisance, requiring the user to think about how to fill the matrix with values using the matrix() function. The %<-% operator solves that issue by allowing the user to construct matrices using code that shows the actual matrices.
Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.
This package provides a computationally efficient solution for generating optimal experimental designs in Accelerated Life Testing (ALT). Leveraging a Particle Swarm Optimization (PSO)-based hybrid algorithm, the package identifies optimal test plans that minimize estimation variance under specified failure models and stress profiles. For more detailed, see Lee et al. (2025), Optimal Robust Strategies for Accelerated Life Tests and Fatigue Testing of Polymer Composite Materials <doi:10.1214/25-AOAS2075>, and Hoang (2025), Model-Robust Minimax Design of Accelerated Life Tests via PSO-based Hybrid Algorithm, Master Thesis, Unpublished.
This package provides various functions for parameter estimation of one-dimensional stable distributions and their mixtures. It implements a diverse set of estimation methods, including quantile-based approaches, regression methods based on the empirical characteristic function (empirical, kernel, and recursive), and maximum likelihood estimation. For mixture models, it provides stochastic expectationâ maximization (SEM) algorithms and Bayesian estimation methods using sampling and importance sampling to overcome the long burn-in period of Markov Chain Monte Carlo (MCMC) strategies. The package also includes tools and statistical tests for analyzing whether a dataset follows a stable distribution. Some of the implemented methods are described in Hajjaji, O., Manou-Abi, S. M., and Slaoui, Y. (2024) <doi:10.1080/02664763.2024.2434627>.
Flexible, mechanistic, and spatially explicit simulator of metacommunities. It extends our previous package - rangr (see <https://github.com/ropensci/rangr>), which implemented a mechanistic virtual species simulator integrating population dynamics and dispersal. The mrangr package adds the ability to simulate multiple species interacting through an asymmetric matrix of pairwise relationships, allowing users to model all types of biotic interactions â competitive, facilitative, or neutral â within spatially explicit virtual environments. This work was supported by the National Science Centre, Poland, grant no. 2018/29/B/NZ8/00066 and the PoznaÅ Supercomputing and Networking Centre (grant no. pl0090-01).
Fit multivariate mixture of normal distribution using covariance structure.
Maximum likelihood estimates (MLE) of the proportions of 5-mC and 5-hmC in the DNA using information from BS-conversion, TAB-conversion, and oxBS-conversion methods. One can use information from all three methods or any combination of two of them. Estimates are based on Binomial model by Qu et al. (2013) <doi:10.1093/bioinformatics/btt459> and Kiihl et al. (2019) <doi:10.1515/sagmb-2018-0031>.
This package provides a method for multivariate ordinal data generation given marginal distributions and correlation matrix based on the methodology proposed by Demirtas (2006) <DOI:10.1080/10629360600569246>.