Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for analyzing the association between one single response categorical variable (SRCV) and one multiple response categorical variable (MRCV), or between two or three MRCVs. A modified Pearson chi-square statistic can be used to test for marginal independence for the one or two MRCV case, or a more general loglinear modeling approach can be used to examine various other structures of association for the two or three MRCV case. Bootstrap- and asymptotic-based standardized residuals and model-predicted odds ratios are available, in addition to other descriptive information. Statisical methods implemented are described in Bilder et al. (2000) <doi:10.1080/03610910008813665>, Bilder and Loughin (2004) <doi:10.1111/j.0006-341X.2004.00147.x>, Bilder and Loughin (2007) <doi:10.1080/03610920600974419>, and Koziol and Bilder (2014) <https://journal.r-project.org/articles/RJ-2014-014/>.
This package provides tools for the calculation of effect sizes (standardised mean difference) and mean difference in pre-post controlled studies, including robust imputation of missing variances (standard deviation of changes) and correlations (Pearson correlation coefficient). The main function metacor_dual() implements several methods for imputing missing standard deviation of changes or Pearson correlation coefficient, and generates transparent imputation reports. Designed for meta-analyses with incomplete summary statistics. For details on the methods, see Higgins et al. (2023) and Fu et al. (2013).
Package solves multiple knapsack optimisation problem. Given a set of items, each with volume and value, it will allocate them to knapsacks of a given size in a way that value of top N knapsacks is as large as possible.
This package provides a system for testing differential effects among treatments in case of Randomised Block Design and Latin Square Design when there is one missing observation. Methods for this process are as described in A.M.Gun,M.K.Gupta and B.Dasgupta(2019,ISBN:81-87567-81-3).
Regression methods for the meta-SDT model. The package implements methods for cognitive experiments of metacognition as described in Kristensen, S. B., Sandberg, K., & Bibby, B. M. (2020). Regression methods for metacognitive sensitivity. Journal of Mathematical Psychology, 94. <doi:10.1016/j.jmp.2019.102297>.
Using this package, one can determine the minimum sample size required so that the absolute deviation of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.
Following the common types of measures of uncertainty for parameter estimation, two measures of uncertainty were proposed for model selection, see Liu, Li and Jiang (2020) <doi:10.1007/s11749-020-00737-9>. The first measure is a kind of model confidence set that relates to the variation of model selection, called Mac. The second measure focuses on error of model selection, called LogP. They are all computed via bootstrapping. This package provides functions to compute these two measures. Furthermore, a similar model confidence set adapted from Bayesian Model Averaging can also be computed using this package.
This package provides a new way to predict time series using the marginal distribution table in the absence of the significance of traditional models.
Interaction between a genetic variant (e.g., a single nucleotide polymorphism) and an environmental variable (e.g., physical activity) can have a shared effect on multiple phenotypes (e.g., blood lipids). We implement a two-step method to test for an overall interaction effect on multiple phenotypes. In first step, the method tests for an overall marginal genetic association between the genetic variant and the multivariate phenotype. The genetic variants which show an evidence of marginal overall genetic effect in the first step are prioritized while testing for an overall gene-environment interaction effect in the second step. Methodology is available from: A Majumdar, KS Burch, S Sankararaman, B Pasaniuc, WJ Gauderman, JS Witte (2020) <doi:10.1101/2020.07.06.190256>.
This package provides an RStudio extension with a chat interface for an AI coding agent to help users with R programming tasks.
Defines colour palettes and themes for Michigan State University (MSU) publications and presentations. Palettes and themes are supported in both base R and ggplot2 graphics, and are intended to provide consistency between those creating documents and presentations.
This package provides functions to access drug regulatory data from public RESTful APIs including the FDA Open API and the Health Canada Drug Product Database API', retrieving real-time or historical information on drug approvals, adverse events, recalls, and product details. Additionally, the package includes a curated collection of open datasets focused on drugs, pharmaceuticals, treatments, and clinical studies. These datasets cover diverse topics such as treatment dosages, pharmacological studies, placebo effects, drug reactions, misuses of pain relievers, and vaccine effectiveness. The package supports reproducible research and teaching in pharmacology, medicine, and healthcare by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: FDA API <https://open.fda.gov/apis/> and Health Canada API <https://health-products.canada.ca/api/documentation/dpd-documentation-en.html>.
An implementation of Multi-Task Logistic Regression (MTLR) for R. This package is based on the method proposed by Yu et al. (2011) which utilized MTLR for generating individual survival curves by learning feature weights which vary across time. This model was further extended to account for left and interval censored data.
Fit generalized linear models with binomial responses using a median modified score approach (Kenne Pagui et al., 2016, <https://arxiv.org/abs/1604.04768>) to median bias reduction. This method respects equivariance under reparameterizations for each parameter component and also solves the infinite estimates problem (data separation).
Fitting and testing multinomial processing tree (MPT) models, a class of nonlinear models for categorical data. The parameters are the link probabilities of a tree-like graph and represent the latent cognitive processing steps executed to arrive at observable response categories (Batchelder & Riefer, 1999 <doi:10.3758/bf03210812>; Erdfelder et al., 2009 <doi:10.1027/0044-3409.217.3.108>; Riefer & Batchelder, 1988 <doi:10.1037/0033-295x.95.3.318>).
Statistical Analyses and Pooling after Multiple Imputation. A large variety of repeated statistical analysis can be performed and finally pooled. Statistical analysis that are available are, among others, Levene's test, Odds and Risk Ratios, One sample proportions, difference between proportions and linear and logistic regression models. Functions can also be used in combination with the Pipe operator. More and more statistical analyses and pooling functions will be added over time. Heymans (2007) <doi:10.1186/1471-2288-7-33>. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>. Sidi (2021) <doi:10.1080/00031305.2021.1898468>. Lott (2018) <doi:10.1080/00031305.2018.1473796>. Grund (2021) <doi:10.31234/osf.io/d459g>.
The Self-Organizing Maps with Built-in Missing Data Imputation. Missing values are imputed and regularly updated during the online Kohonen algorithm. Our method can be used for data visualisation, clustering or imputation of missing data. It is an extension of the online algorithm of the kohonen package. The method is described in the article "Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values" by S. Rejeb, C. Duveau, T. Rebafka (2022) <arXiv:2202.07963>.
This package provides methods for analyzing DNA methylation data via Most Recurrent Methylation Patterns (MRMPs). Supports cell-type annotation, spatial deconvolution, unsupervised clustering, and cancer cell-of-origin inference. Includes C-backed summaries for YAME â .cg/.cmâ files (overlap counts, log2 odds ratios, beta/depth aggregation), an XGBoost classifier, NNLS deconvolution, and plotting utilities. Scales to large spatial and single-cell methylomes and is robust to extreme sparsity.
Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package uses a Variational EM approach by approximating the posterior distribution of latent memberships and selecting hyperparameters through a pseudo-MLE procedure. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models.
Deconvolution of thermal decay curves allows you to quantify proportions of biomass components in plant litter. Thermal decay curves derived from thermogravimetric analysis (TGA) are imported, modified, and then modelled in a three- or four- part mixture model using the Fraser-Suzuki function. The output is estimates for weights of pseudo-components corresponding to hemicellulose, cellulose, and lignin. For more information see: Müller-Hagedorn, M. and Bockhorn, H. (2007) <doi:10.1016/j.jaap.2006.12.008>, à rfão, J. J. M. and Figueiredo, J. L. (2001) <doi:10.1016/S0040-6031(01)00634-7>, and Yang, H. and Yan, R. and Chen, H. and Zheng, C. and Lee, D. H. and Liang, D. T. (2006) <doi:10.1021/ef0580117>.
This package performs treatment allocation in two-arm clinical trials by the maximal procedure described by Berger et al. (2003) <doi:10.1002/sim.1538>. To that end, the algorithm provided by Salama et al. (2008) <doi:10.1002/sim.3014> is implemented.
Perform calculations for the WHO International Reference Reagents for the microbiome. Using strain, species or genera abundance tables generated through analysis of 16S ribosomal RNA sequencing or shotgun sequencing which included a reference reagent. This package will calculate measures of sensitivity, False positive relative abundance, diversity, and similarity based on mean average abundances with respect to the reference reagent.
Correlates variation within the meta-genome to target species phenotype variations in meta-genome with association studies. Follows the pipeline described in Chaston, J.M. et al. (2014) <doi:10.1128/mBio.01631-14>.
This package provides functions used for graphing in multivariate contexts. These functions are designed to support produce reasonable graphs with minimal input of graphing parameters. The motivation for these functions was to support students learning multivariate concepts and R - there may be other functions and packages better-suited to practical data analysis. For details about the ellipse methods see Johnson and Wichern (2007, ISBN:9780131877153).