Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for converting and visualization the free induction decay of mono dimensional nuclear magnetic resonance (NMR) spectra into an audio file. It facilitates the conversion of Bruker datasets in files WAV. The sound of NMR signals could provide an alternative to the current representation of the individual metabolic fingerprint and supply equally significant information. The package includes also NMR spectra of the urine samples provided by four healthy donors. Based on Cacciatore S, Saccenti E, Piccioli M. Hypothesis: the sound of the individual metabolic phenotype? Acoustic detection of NMR experiments. OMICS. 2015;19(3):147-56. <doi:10.1089/omi.2014.0131>.
This package contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software JAGS (which should be installed locally and which is loaded in missingHE via the R package R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, missingHE provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.
An implementation of the mixed neighbourhood selection (MNS) algorithm. The MNS algorithm can be used to estimate multiple related precision matrices. In particular, the motivation behind this work was driven by the need to understand functional connectivity networks across multiple subjects. This package also contains an implementation of a novel algorithm through which to simulate multiple related precision matrices which exhibit properties frequently reported in neuroimaging analysis.
Producing high-quality documents suitable for publication directly from R is made possible by the R Markdown ecosystem. memoiR makes it easy. It provides templates to knit memoirs, articles and slideshows with helpers to publish the documents on GitHub Pages and activate continuous integration.
Collect your data on digital marketing campaigns from Mailchimp using the Windsor.ai API <https://windsor.ai/api-fields/>.
It contains the function to apply MARMoT balancing technique discussed in: Silan, Boccuzzo, Arpino (2021) <DOI:10.1002/sim.9192>, Silan, Belloni, Boccuzzo, (2023) <DOI:10.1007/s10260-023-00695-0>; furthermore it contains a function for computing the Deloof's approximation of the average rank (and also a parallelized version) and a function to compute the Absolute Standardized Bias.
This package provides the mean to parse and render markdown text with grid along with facilities to define the styling of the text.
This package provides a simple way to memoize function results to improve performance by eliminating unnecessary computation or data retrieval activities.
This package provides a compilation of functions to create visually appealing and information-rich plots of meta-analytic data using ggplot2'. Currently allows to create forest plots, funnel plots, and many of their variants, such as rainforest plots, thick forest plots, additional evidence contour funnel plots, and sunset funnel plots. In addition, functionalities for visual inference with the funnel plot in the context of meta-analysis are provided.
This package provides a toolbox for modeling manifest and latent group differences and moderation effects in various statistical network models.
This package provides tools for working with medical coding schemas such as the International Classification of Diseases (ICD). Includes functions for comorbidity classification algorithms such as the Pediatric Complex Chronic Conditions (PCCC), Charlson, and Elixhauser indices.
Generate a monochrome palette from a starting colour for a specified number of colours. The package can also be used to display colour palettes in the plot window, with or without hex codes and colour labels.
Used for general multiple mediation analysis. The analysis method is described in Yu and Li (2022) (ISBN: 9780367365479) "Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS", published by Chapman and Hall/CRC; and Yu et al.(2017) <DOI:10.1016/j.sste.2017.02.001> "Exploring racial disparity in obesity: a mediation analysis considering geo-coded environmental factors", published on Spatial and Spatio-temporal Epidemiology, 21, 13-23.
Allows users to conduct multivariate distance matrix regression using analytic p-values and compute measures of effect size. For details on the method, see McArtor, Lubke, & Bergeman (2017) <doi:10.1007/s11336-016-9527-8>.
Identifying important factors from a large number of potentially important factors of a highly nonlinear and computationally expensive black box model is a difficult problem. Xiao, Joseph, and Ray (2022) <doi:10.1080/00401706.2022.2141897> proposed Maximum One-Factor-at-a-Time (MOFAT) designs for doing this. A MOFAT design can be viewed as an improvement to the random one-factor-at-a-time (OFAT) design proposed by Morris (1991) <doi:10.1080/00401706.1991.10484804>. The improvement is achieved by exploiting the connection between Morris screening designs and Monte Carlo-based Sobol designs, and optimizing the design using a space-filling criterion. This work is supported by a U.S. National Science Foundation (NSF) grant CMMI-1921646 <https://www.nsf.gov/awardsearch/showAward?AWD_ID=1921646>.
More data sets used for demonstrating or testing model-related packages are contained in this package. The data sets are downloaded and cached, allowing for more and bigger data sets.
This package provides tools to analysis of experiments having two or more quantitative explanatory variables and one quantitative dependent variable. Experiments can be without repetitions or with a statistical design (Hair JF, 2016) <ISBN: 13: 978-0138132637>. Pacote para uma analise de experimentos havendo duas ou mais variaveis explicativas quantitativas e uma variavel dependente quantitativa. Os experimentos podem ser sem repeticoes ou com delineamento estatistico (Hair JF, 2016) <ISBN: 13: 978-0138132637>.
Helping psychologists and other behavioural scientists to analyze mouse movement (and other 2-D trajectory) data. Bundles together several functions that compute spatial measures (e.g., maximum absolute deviation, area under the curve, sample entropy) or provide a shorthand for procedures that are frequently used (e.g., time normalization, linear interpolation, extracting initiation and movement times). For more information on these dependent measures, see Wirth et al. (2020) <doi:10.3758/s13428-020-01409-0>.
This package contains the Markov cluster algorithm (MCL) for identifying clusters in networks and graphs. The algorithm simulates random walks on a (n x n) matrix as the adjacency matrix of a graph. It alternates an expansion step and an inflation step until an equilibrium state is reached.
Fit and plot macroecological patterns predicted by the Maximum Entropy Theory of Ecology (METE).
This package provides methods and functions to analyze the quantitative or qualitative performance for diagnostic assays, and outliers detection, reader precision and reference range are discussed. Most of the methods and algorithms refer to CLSI (Clinical & Laboratory Standards Institute) recommendations and NMPA (National Medical Products Administration) guidelines. In additional, relevant plots are constructed by ggplot2'.
Evaluation and optimization of the Fisher Information Matrix in NonLinear Mixed Effect Models using Markov Chains Monte Carlo for continuous and discrete data.
Estimates risk as a function of a marker by integrating over other covariates in a conditional risk model.
Climate-sensitive, single-tree forest simulator based on data-driven machine learning. It simulates the main forest processesâ radial growth, height growth, mortality, crown recession, regeneration, and harvestingâ so users can assess stand development under climate and management scenarios. The height model is described by Skudnik and JevÅ¡enak (2022) <doi:10.1016/j.foreco.2022.120017>, the basal-area increment model by JevÅ¡enak and Skudnik (2021) <doi:10.1016/j.foreco.2020.118601>, and an overview of the MLFS package, workflow, and applications is provided by JevÅ¡enak, ArniÄ , Krajnc, and Skudnik (2023), Ecological Informatics <doi:10.1016/j.ecoinf.2023.102115>.