Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate Sample Size and Power for Association Studies Involving Mitochondrial DNA Haplogroups. Based on formulae by Samuels et al. AJHG, 2006. 78(4):713-720. <DOI:10.1086/502682>.
Multi-core replication function to make it easier to do fast Monte Carlo simulation. Based on the mcreplicate() function from the rethinking package. The rethinking package requires installing rstan', which is onerous to install, while also not adding capabilities to this function.
Multivariate Analysis methods and data sets used in John Marden's book Multivariate Statistics: Old School (2015) <ISBN:978-1456538835>. This also serves as a companion package for the STAT 571: Multivariate Analysis course offered by the Department of Statistics at the University of Illinois at Urbana-Champaign ('UIUC').
Implementation of marginalized models for zero-inflated count data. This package provides a tool to implement an estimation algorithm for the marginalized count models, which directly makes inference on the effect of each covariate on the marginal mean of the outcome. The method involves the marginalized zero-inflated Poisson model described in Long et al. (2014) <doi:10.1002/sim.6293>.
This package provides a framework for multipurpose optimal resource allocation in survey sampling, extending the classical optimal allocation principles introduced by Tschuprow (1923) and Neyman (1934) to multidomain and multivariate allocation problems. The primary method mosalloc() allows for the consideration of precision and cost constraints at the subpopulation level while minimizing either a vector of sampling errors or survey costs across a broad range of optimal sample allocation problems. The approach supports both single- and multistage designs. For single-stage stratified random sampling, the mosallocSTRS() function offers a user- friendly interface. Sensitivity analysis is supported through the problem's dual variables, which are naturally obtained via the internal use of the Embedded Conic Solver from the ECOSolveR package. See Willems (2025, <doi:10.25353/ubtr-9200-484c-5c89>) for a detailed description of the theory behind MOSAlloc'.
Scalable Bayesian clustering of categorical datasets. The package implements a hierarchical Dirichlet (Process) mixture of multinomial distributions. It is thus a probabilistic latent class model (LCM) and can be used to reduce the dimensionality of hierarchical data and cluster individuals into latent classes. It can automatically infer an appropriate number of latent classes or find k classes, as defined by the user. The model is based on a paper by Dunson and Xing (2009) <doi:10.1198/jasa.2009.tm08439>, but implements a scalable variational inference algorithm so that it is applicable to large datasets. It is described and tested in the accompanying paper by Ahlmann-Eltze and Yau (2018) <doi:10.1109/DSAA.2018.00068>.
Compute important quantities when we consider stochastic systems that are observed continuously. Such as, Cost model, Limiting distribution, Transition matrix, Transition distribution and Occupancy matrix. The methods are described, for example, Ross S. (2014), Introduction to Probability Models. Eleven Edition. Academic Press.
This package provides a collection of statistical tests for the detection of differential item functioning (DIF) in multistage tests. Methods entail logistic regression, an adaptation of the simultaneous item bias test (SIBTEST), and various score-based tests. The presented tests provide itemwise test for DIF along categorical, ordinal or metric covariates. Methods for uniform and non-uniform DIF effects are available depending on which method is used.
Three generalizations of the synthetic control method (which has already an implementation in package Synth') are implemented: first, MSCMT allows for using multiple outcome variables, second, time series can be supplied as economic predictors, and third, a well-defined cross-validation approach can be used. Much effort has been taken to make the implementation as stable as possible (including edge cases) without losing computational efficiency. A detailed description of the main algorithms is given in Becker and Klöà ner (2018) <doi:10.1016/j.ecosta.2017.08.002>.
Given a set of models for which a measure of model (mis)fit and model complexity is provided, CHull(), developed by Ceulemans and Kiers (2006) <doi:10.1348/000711005X64817>, determines the models that are located on the boundary of the convex hull and selects an optimal model by means of the scree test values.
Convert mouse genome positions between the build 39 physical map and the genetic map of Cox et al. (2009) <doi:10.1534/genetics.109.105486>.
Utilizing model-based clustering (unsupervised) for functional magnetic resonance imaging (fMRI) data. The developed methods (Chen and Maitra (2023) <doi:10.1002/hbm.26425>) include 2D and 3D clustering analyses (for p-values with voxel locations) and segmentation analyses (for p-values alone) for fMRI data where p-values indicate significant level of activation responding to stimulate of interesting. The analyses are mainly identifying active voxel/signal associated with normal brain behaviors. Analysis pipelines (R scripts) utilizing this package (see examples in inst/workflow/') is also implemented with high performance techniques.
This package provides functions to compute and plot multivariate (partial) Mantel correlograms.
Handling the microclimatic data in R. The myClim workflow begins at the reading data primary from microclimatic dataloggers, but can be also reading of meteorological station data from files. Cleaning time step, time zone settings and metadata collecting is the next step of the work flow. With myClim tools one can crop, join, downscale, and convert microclimatic data formats, sort them into localities, request descriptive characteristics and compute microclimatic variables. Handy plotting functions are provided with smart defaults.
Energy-Vorticity theory (EVT) is the fundamental theory to describe processes in the atmosphere by combining conserved quantities from hydrodynamics and thermodynamics. The package meteoEVT provides functions to calculate many energetic and vortical quantities, like potential vorticity, Bernoulli function and dynamic state index (DSI) [e.g. Weber and Nevir, 2008, <doi:10.1111/j.1600-0870.2007.00272.x>], for given gridded data, like ERA5 reanalyses. These quantities can be studied directly or can be used for many applications in meteorology, e.g., the objective identification of atmospheric fronts. For this purpose, separate function are provided that allow the detection of fronts based on the thermic front parameter [Hewson, 1998, <doi:10.1017/S1350482798000553>], the F diagnostic [Parfitt et al., 2017, <doi:10.1002/2017GL073662>] and the DSI [Mack et al., 2022, <arXiv:2208.11438>].
Fast manipulation of symbolic multivariate polynomials using the Map class of the Standard Template Library. The package uses print and coercion methods from the mpoly package but offers speed improvements. It is comparable in speed to the spray package for sparse arrays, but retains the symbolic benefits of mpoly'. To cite the package in publications, use Hankin 2022 <doi:10.48550/ARXIV.2210.15991>. Uses disordR discipline.
Data sets and scripts for Modeling Psychophysical Data in R (Springer).
Enables us to use the functions of the package magick interactively.
This package provides a lightweight framework for model selection and hyperparameter tuning in R. The package offers intuitive tools for grid search, cross-validation, and combined grid search with cross-validation that work seamlessly with virtually any modeling package. Designed for flexibility and ease of use, it standardizes tuning workflows while remaining fully compatible with a wide range of model interfaces and estimation functions.
Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at <doi:10.18637/jss.v111.i07>.
Meteorological Tools following the FAO56 irrigation paper of Allen et al. (1998) [1]. Functions for calculating: reference evapotranspiration (ETref), extraterrestrial radiation (Ra), net radiation (Rn), saturation vapor pressure (satVP), global radiation (Rs), soil heat flux (G), daylight hours, and more. [1] Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9).
This package contains functions intended to facilitate the production of plant taxonomic monographs. The package includes functions to convert tables into taxonomic descriptions, lists of collectors, examined specimens, identification keys (dichotomous and interactive), and can generate a monograph skeleton. Additionally, wrapper functions to batch the production of phenology histograms and distributional and diversity maps are also available.
Learning a mixed directed acyclic graph based on both continuous and categorical data.
This package provides modules as an organizational unit for source code. Modules enforce to be more rigorous when defining dependencies and have a local search path. They can be used as a sub unit within packages or in scripts.