Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of helper functions for analyzing Second Primary Cancer data, including functions to reshape data, to calculate patient states and analyze cancer incidence.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Normalize data to minimize the difference between sample plates (batch effects). For given data in a matrix and grouping variable (or plate), the function normn_MA normalizes the data on MA coordinates. More details are in the citation. The primary method is Multi-MA'. Other fitting functions on MA coordinates can also be employed e.g. loess.
Offers a gentle introduction to machine learning concepts for practitioners with a statistical pedigree: decomposition of model error (bias-variance trade-off), nonlinear correlations, information theory and functional permutation/bootstrap simulations. Székely GJ, Rizzo ML, Bakirov NK. (2007). <doi:10.1214/009053607000000505>. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. (2011). <doi:10.1126/science.1205438>.
Matrix is an universal and sometimes primary object/unit in applied mathematics and statistics. We provide a number of algorithms for selected problems in optimization and statistical inference. For general exposition to the topic with focus on statistical context, see the book by Banerjee and Roy (2014, ISBN:9781420095388).
Utility functions for working with environmental time series data from known locations. The compact data model is structured as a list with two dataframes. A meta dataframe contains spatial and measuring device metadata associated with deployments at known locations. A data dataframe contains a datetime column followed by columns of measurements associated with each "device-deployment". Ephemerides calculations are based on code originally found in NOAA's "Solar Calculator" <https://gml.noaa.gov/grad/solcalc/>.
This package provides a test of multivariate normality of an unknown sample that does not require estimation of the nuisance parameters, the mean and covariance matrix. Rather, a sequence of transformations removes these nuisance parameters and results in a set of sample matrices that are positive definite. These matrices are uniformly distributed on the space of positive definite matrices in the unit hyper-rectangle if and only if the original data is multivariate normal (Fairweather, 1973, Doctoral dissertation, University of Washington). The package performs a goodness of fit test of this hypothesis. In addition to the test, functions in the package give visualizations of the support region of positive definite matrices for bivariate samples.
Estimation, inference and forecasting using the Bayesian approach for multivariate threshold autoregressive (TAR) models in which the distribution used to describe the noise process belongs to the class of Gaussian variance mixtures.
This package provides methods of selecting one from many numeric predictors for a regression model, to ensure that the additional predictor has the maximum effect size.
This package provides functions for cost-optimal control charts with a focus on health care applications. Compared to assumptions in traditional control chart theory, here, we allow random shift sizes, random repair and random sampling times. The package focuses on X-bar charts with a sample size of 1 (representing the monitoring of a single patient at a time). The methods are described in Zempleni et al. (2004) <doi:10.1002/asmb.521>, Dobi and Zempleni (2019) <doi:10.1002/qre.2518> and Dobi and Zempleni (2019) <http://ac.inf.elte.hu/Vol_049_2019/129_49.pdf>.
Stability based methods for model order selection in clustering problems (Valentini, G (2007), <doi:10.1093/bioinformatics/btl600>). Using multiple perturbations of the data the stability of clustering solutions is assessed. Different perturbations may be used: resampling techniques, random projections and noise injection. Stability measures for the estimate of clustering solutions and statistical tests to assess their significance are provided.
This package provides a comprehensive collection of linkage methods for agglomerative hierarchical clustering on a matrix of proximity data (distances or similarities), returning a multifurcated dendrogram or multidendrogram. Multidendrograms can group more than two clusters when ties in proximity data occur, and therefore they do not depend on the order of the input data. Descriptive measures to analyze the resulting dendrogram are additionally provided. <doi:10.18637/jss.v114.i02>.
Estimation, inference and diagnostics for Univariate Autoregressive Markov Switching Models for Linear and Generalized Models. Distributions for the series include gaussian, Poisson, binomial and gamma cases. The EM algorithm is used for estimation (see Perlin (2012) <doi:10.2139/ssrn.1714016>).
We implement functions allowing for mediation analysis to be performed in cases where the mediator is a count variable with excess zeroes. First a function is provided allowing users to perform analysis for zero-inflated count variables using the marginalized zero-inflated Poisson (MZIP) model (Long et al. 2014 <DOI:10.1002/sim.6293>). Using the counterfactual approach to mediation and MZIP we can obtain natural direct and indirect effects for the overall population. Using delta method processes variance estimation can be performed instantaneously. Alternatively, bootstrap standard errors can be used. We also provide functions for cases with exposure-mediator interactions with four-way decomposition of total effect.
This package provides access to coded election programmes from the Manifesto Corpus and to the Manifesto Project's Main Dataset and routines to analyse this data. The Manifesto Project <https://manifesto-project.wzb.eu> collects and analyses election programmes across time and space to measure the political preferences of parties. The Manifesto Corpus contains the collected and annotated election programmes in the Corpus format of the package tm to enable easy use of text processing and text mining functionality. Specific functions for scaling of coded political texts are included.
Supply functions for the creation and handling of missing data as well as tools to evaluate missing data methods. Nearly all possibilities of generating missing data discussed by Santos et al. (2019) <doi:10.1109/ACCESS.2019.2891360> and some additional are implemented. Functions are supplied to compare parameter estimates and imputed values to true values to evaluate missing data methods. Evaluations of these types are done, for example, by Cetin-Berber et al. (2019) <doi:10.1177/0013164418805532> and Kim et al. (2005) <doi:10.1093/bioinformatics/bth499>.
This package provides an extension to MadanText for creating and analyzing co-occurrence networks in Persian text data. This package mainly makes use of the PersianStemmer (Safshekan, R., et al. (2019). <https://CRAN.R-project.org/package=PersianStemmer>), udpipe (Wijffels, J., et al. (2023). <https://CRAN.R-project.org/package=udpipe>), and shiny (Chang, W., et al. (2023). <https://CRAN.R-project.org/package=shiny>) packages.
Exploratory and predictive methods for the analysis of several blocks of variables measured on the same individuals.
Mixture model with overlapping clusters for binary actor-event data. Parameters are estimated in a Bayesian framework. Model and inference are described in Ranciati, Vinciotti, Wit (2017) Modelling actor-event network data via a mixture model under overlapping clusters. Submitted.
User-friendly package for reporting replicability-analysis methods, affixed to meta-analyses summary. The replicability-analysis output provides an assessment of the investigated intervention, where it offers quantification of effect replicability and assessment of the consistency of findings. - Replicability-analysis for fixed-effects and random-effect meta analysis: - r(u)-value; - lower bounds on the number of studies with replicated positive and\or negative effect; - Allows detecting inconsistency of signals; - forest plots with the summary of replicability analysis results; - Allows Replicability-analysis with or without the common-effect assumption.
Allows the user to generate a friendly user interface for emails sending. The user can choose from the most popular free email services ('Gmail', Outlook', Yahoo') and his default email application. The package is a wrapper for the Mailtoui JavaScript library. See <https://mailtoui.com/#menu> for more information.
This package provides a set of functions, classes and methods for performing ABC and ABC/XYZ analyses, identifying overperforming, underperforming and constantly performing items, and plotting, analyzing as well as predicting the temporal development of items.
Publicly available data from Medicare frequently requires extensive initial effort to extract desired variables and merge them; this package formalizes the techniques I've found work best. More information on the Medicare program, as well as guidance for the publicly available data this package targets, can be found on CMS's website covering publicly available data. See <https://www.cms.gov/Research-Statistics-Data-and-Systems/Research-Statistics-Data-and-Systems.html>.
In breeding experiments, mating environmental (ME) designs are very popular as mating designs are directly implemented in the field environment using block or row-column designs. Here, three functions are given related to three new methods which will generate mating diallel cross designs (Hinkelmann and Kempthorne, 1963<doi:10.2307/2333899>) or mating environmental (ME) designs along with design parameters, C matrix, eigenvalues (EVs), degree of fractionations (DF) and canonical efficiency factor (CEF). Another one function is added to check the properties of a given ME diallel cross design.