Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a minimal library specifically designed to make the estimation of Machine Learning (ML) techniques as easy and accessible as possible, particularly within the framework of the Knowledge Discovery in Databases (KDD) process in data mining. The package provides essential tools to structure and execute each stage of a predictive or classification modeling workflow, aligning closely with the fundamental steps of the KDD methodology, from data selection and preparation, through model building and tuning, to the interpretation and evaluation of results using Sensitivity Analysis. The MLwrap workflow is organized into four core steps; preprocessing(), build_model(), fine_tuning(), and sensitivity_analysis(). It also includes global and pairwise interaction analysis based on Friedmanâ s H-statistic to support a more detailed interpretation of complex feature relationships.These steps correspond, respectively, to data preparation and transformation, model construction, hyperparameter optimization, and sensitivity analysis. The user can access comprehensive model evaluation results including fit assessment metrics, plots, predictions, and performance diagnostics for ML models implemented through Neural Networks', Random Forest', XGBoost (Extreme Gradient Boosting), and Support Vector Machines (SVM) algorithms. By streamlining these phases, MLwrap aims to simplify the implementation of ML techniques, allowing analysts and data scientists to focus on extracting actionable insights and meaningful patterns from large datasets, in line with the objectives of the KDD process.
Estimates multivariate subgaussian stable densities and probabilities as well as generates random variates using product distribution theory. A function for estimating the parameters from data to fit a distribution to data is also provided, using the method from Nolan (2013) <doi:10.1007/s00180-013-0396-7>.
This package provides a collection of moment-matching methods for computing the cumulative distribution function of a positively-weighted sum of chi-squared random variables. Methods include the Satterthwaite-Welch method, Hall-Buckley-Eagleson method, Wood's F method, and the Lindsay-Pilla-Basak method.
Analysis of annual average ocean water level time series from long (minimum length 80 years) individual records, providing improved estimates of trend (mean sea level) and associated real-time velocities and accelerations. Improved trend estimates are based on Singular Spectrum Analysis methods. Various gap-filling options are included to accommodate incomplete time series records. The package also contains a forecasting module to consider the implication of user defined quantum of sea level rise between the end of the available historical record and the year 2100. A wide range of screen and pdf plotting options are available in the package.
Algorithms for solving various Maximum Weight Connected Subgraph Problems, including variants with budget constraints, cardinality constraints, weighted edges and signals. The package represents an R interface to high-efficient solvers based on relax-and-cut approach (Ã lvarez-Miranda E., Sinnl M. (2017) <doi:10.1016/j.cor.2017.05.015>) mixed-integer programming (Loboda A., Artyomov M., and Sergushichev A. (2016) <doi:10.1007/978-3-319-43681-4_17>) and simulated annealing.
Matching longitudinal methodology models with complex sampling design. It fits fixed and random effects models and covariance structured models so far. It also provides tools to perform statistical tests considering these specifications as described in : Pacheco, P. H. (2021). "Modeling complex longitudinal data in R: development of a statistical package." <https://repositorio.ufjf.br/jspui/bitstream/ufjf/13437/1/pedrohenriquedemesquitapacheco.pdf>.
Automatically segments a 3D array of voxels into mutually exclusive morphological elements. This package extends existing work for segmenting 2D binary raster data. A paper documenting this approach has been accepted for publication in the journal Landscape Ecology. Detailed references will be updated here once those are known.
MedDRA data is used for defining adverse events in clinical studies. You can load and merge the data for use in categorizing the adverse events using this package. The package requires the data licensed from MedDRA <https://www.meddra.org/>.
This package contains the function mice.impute.midastouch(). Technically this function is to be run from within the mice package (van Buuren et al. 2011), type ??mice. It substitutes the method pmm within mice by midastouch'. The authors have shown that midastouch is superior to default pmm'. Many ideas are based on Siddique / Belin 2008's MIDAS.
This package provides functions to impute missing values using Gaussian copulas for mixed data types as described by Christoffersen et al. (2021) <arXiv:2102.02642>. The method is related to Hoff (2007) <doi:10.1214/07-AOAS107> and Zhao and Udell (2019) <arXiv:1910.12845> but differs by making a direct approximation of the log marginal likelihood using an extended version of the Fortran code created by Genz and Bretz (2002) <doi:10.1198/106186002394> in addition to also support multinomial variables.
This package provides tools for estimating multivariate probit models, calculating conditional and unconditional expectations, and calculating marginal effects on conditional and unconditional expectations.
Data-driven approach for Exploratory Factor Analysis (EFA) that uses Model Implied Instrumental Variables (MIIVs). The method starts with a one factor model and arrives at a suggested model with enhanced interpretability that allows cross-loadings and correlated errors.
Stability based methods for model order selection in clustering problems (Valentini, G (2007), <doi:10.1093/bioinformatics/btl600>). Using multiple perturbations of the data the stability of clustering solutions is assessed. Different perturbations may be used: resampling techniques, random projections and noise injection. Stability measures for the estimate of clustering solutions and statistical tests to assess their significance are provided.
This package provides functions, which make matrix creation conciser (such as the core package's function m() for rowwise matrix definition or runifm() for random value matrices). Allows to set multiple matrix values at once, by using list of formulae. Provides additional matrix operators and dedicated plotting function.
This package provides a metadata structure for clinical data analysis and reporting based on Analysis Data Model (ADaM) datasets. The package simplifies clinical analysis and reporting tool development by defining standardized inputs, outputs, and workflow. The package can be used to create analysis and reporting planning grid, mock table, and validated analysis and reporting results based on consistent inputs.
According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judgesâ private information. Asa Palley & Ville Satopää (2021) "Boosting the Wisdom of Crowds Within a Single Judgment Problem: Selective Averaging Based on Peer Predictions" <https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286> proposes a procedure for calculating a weighted average of the judgesâ individual estimates such that resulting aggregate estimate appropriately combines the judges collective information within a single estimation problem. The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median. This aggregate estimate -- know as "the knowledge-weighted estimate" -- inputs a) judges estimates of a continuous outcome (E) and b) predictions of others average estimate of this outcome (P). In this R-package, the function knowledge_weighted_estimate(E,P) implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.
This is an EM algorithm based method for imputation of missing values in multivariate normal time series. The imputation algorithm accounts for both spatial and temporal correlation structures. Temporal patterns can be modeled using an ARIMA(p,d,q), optionally with seasonal components, a non-parametric cubic spline or generalized additive models with exogenous covariates. This algorithm is specially tailored for climate data with missing measurements from several monitors along a given region.
Implemented are various tests for semi-parametric repeated measures and general MANOVA designs that do neither assume multivariate normality nor covariance homogeneity, i.e., the procedures are applicable for a wide range of general multivariate factorial designs. In addition to asymptotic inference methods, novel bootstrap and permutation approaches are implemented as well. These provide more accurate results in case of small to moderate sample sizes. Furthermore, post-hoc comparisons are provided for the multivariate analyses. Friedrich, S., Konietschke, F. and Pauly, M. (2019) <doi:10.32614/RJ-2019-051>.
Compute and select tuning parameters for the MRCE estimator proposed by Rothman, Levina, and Zhu (2010) <doi:10.1198/jcgs.2010.09188>. This estimator fits the multiple output linear regression model with a sparse estimator of the error precision matrix and a sparse estimator of the regression coefficient matrix.
Miscellaneous functions and wrappers for development in other packages created, maintained by Jordan Mark Barbone.
This package provides a user-friendly way for the analysis of multinomial processing tree (MPT) models (e.g., Riefer, D. M., and Batchelder, W. H. [1988]. Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339) for single and multiple datasets. The main functions perform model fitting and model selection. Model selection can be done using AIC, BIC, or the Fisher Information Approximation (FIA) a measure based on the Minimum Description Length (MDL) framework. The model and restrictions can be specified in external files or within an R script in an intuitive syntax or using the context-free language for MPTs. The classical .EQN file format for model files is also supported. Besides MPTs, this package can fit a wide variety of other cognitive models such as SDT models (see fit.model). It also supports multicore fitting and FIA calculation (using the snowfall package), can generate or bootstrap data for simulations, and plot predicted versus observed data.
It finds Orthogonal Data Projections with Maximal Skewness. The first data projection in the output is the most skewed among all linear data projections. The second data projection in the output is the most skewed among all data projections orthogonal to the first one, and so on.
This package performs maximum likelihood estimation for finite mixture models for families including Normal, Weibull, Gamma and Lognormal by using EM algorithm, together with Newton-Raphson algorithm or bisection method when necessary. It also conducts mixture model selection by using information criteria or bootstrap likelihood ratio test. The data used for mixture model fitting can be raw data or binned data. The model fitting process is accelerated by using R package Rcpp'.
Electronic health records (EHR) linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. Towards that end, we developed an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Specifically, our proposed method, called MAP (Map Automated Phenotyping algorithm), fits an ensemble of latent mixture models on aggregated ICD and NLP counts along with healthcare utilization. The MAP algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying subjects with phenotype yes/no (See Katherine P. Liao, et al. (2019) <doi:10.1093/jamia/ocz066>.).