Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a companion to the book Cook, D. and Laa, U. (2023) <https://dicook.github.io/mulgar_book/> "Interactively exploring high-dimensional data and models in R". by Cook and Laa. It contains useful functions for processing data in preparation for visualising with a tour. There are also several sample data sets.
Incorporates Approximate Bayesian Computation to get a posterior distribution and to select a model optimal parameter for an observation point. Additionally, the meta-sampling heuristic algorithm is realized for parameter estimation, which requires no model runs and is dimension-independent. A sampling scheme is also presented that allows model runs and uses the meta-sampling for point generation. A predictor is realized as the meta-sampling for the model output. All the algorithms leverage a machine learning method utilizing the maxima weighted Isolation Kernel approach, or MaxWiK'. The method involves transforming raw data to a Hilbert space (mapping) and measuring the similarity between simulated points and the maxima weighted Isolation Kernel mapping corresponding to the observation point. Comprehensive details of the methodology can be found in the papers Iurii Nagornov (2024) <doi:10.1007/978-3-031-66431-1_16> and Iurii Nagornov (2023) <doi:10.1007/978-3-031-29168-5_18>.
This package provides tools for analyzing Marshall-Olkin shock models semi-independent time. It includes interactive shiny applications for exploring copula-based dependence structures, along with functions for modeling and visualization. The methods are based on Mijanovic and Popovic (2024, submitted) "An R package for Marshall-Olkin shock models with semi-independent times.".
Conducts and visualizes propensity score analysis for multilevel, or clustered data. Bryer & Pruzek (2011) <doi:10.1080/00273171.2011.636693>.
Two method new of multigroup and simulation of data. The first technique called multigroup PCA (mgPCA) this multivariate exploration approach that has the idea of considering the structure of groups and / or different types of variables. On the other hand, the second multivariate technique called Multigroup Dimensionality Reduction (MDR) it is another multivariate exploration method that is based on projections. In addition, a method called Single Dimension Exploration (SDE) was incorporated for to analyze the exploration of the data. It could help us in a better way to observe the behavior of the multigroup data with certain variables of interest.
This package provides a collection of functions for computations and visualizations of microbial pan-genomes.
Implementation of marginalized models for zero-inflated count data. This package provides a tool to implement an estimation algorithm for the marginalized count models, which directly makes inference on the effect of each covariate on the marginal mean of the outcome. The method involves the marginalized zero-inflated Poisson model described in Long et al. (2014) <doi:10.1002/sim.6293>.
Deconvolution of thermal decay curves allows you to quantify proportions of biomass components in plant litter. Thermal decay curves derived from thermogravimetric analysis (TGA) are imported, modified, and then modelled in a three- or four- part mixture model using the Fraser-Suzuki function. The output is estimates for weights of pseudo-components corresponding to hemicellulose, cellulose, and lignin. For more information see: Müller-Hagedorn, M. and Bockhorn, H. (2007) <doi:10.1016/j.jaap.2006.12.008>, à rfão, J. J. M. and Figueiredo, J. L. (2001) <doi:10.1016/S0040-6031(01)00634-7>, and Yang, H. and Yan, R. and Chen, H. and Zheng, C. and Lee, D. H. and Liang, D. T. (2006) <doi:10.1021/ef0580117>.
This package provides tools for analyzing metabolic pathway completeness, abundance, and transcripts using KEGG Orthology (KO) data from (meta)genomic and (meta)transcriptomic studies. Supports both completeness (presence/absence) and abundance-weighted analyses. Includes built-in KEGG reference datasets. For more details see Li et al. (2023) <doi:10.1038/s41467-023-42193-7>.
Implementation of custom tidymodels metrics for multi-class prediction models with a single negative class. Currently are implemented macro-average sensitivity and specificity as in Mortaz, Ebrahim (2020) "Imbalance accuracy metric for model selection in multi-class imbalance classification problemsâ <doi:10.1016/j.knosys.2020.106490> and a generalized weighted Youden index as in Li, D.L., Shen F., Yin Y., Peng J.X and Chen P.Y. (2013) â Weighted Youden index and its two-independent-sample comparison based on weighted sensitivity and specificityâ <doi:10.3760/cma.j.issn.0366-6999.20123102>.
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes (Dombry, Engelke and Oesting, 2016, <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
Calculate the financial impact of using a churn model in terms of cost, revenue, profit and return on investment.
Extended tools for analyzing telemetry data using generalized hidden Markov models. Features of momentuHMM (pronounced ``momentum'') include data pre-processing and visualization, fitting HMMs to location and auxiliary biotelemetry or environmental data, biased and correlated random walk movement models, hierarchical HMMs, multiple imputation for incorporating location measurement error and missing data, user-specified design matrices and constraints for covariate modelling of parameters, random effects, decoding of the state process, visualization of fitted models, model checking and selection, and simulation. See McClintock and Michelot (2018) <doi:10.1111/2041-210X.12995>.
The MetAlyzer S4 object provides methods to read and reformat metabolomics data for convenient data handling, statistics and downstream analysis. The resulting format corresponds to input data of the Shiny app MetaboExtract (<https://www.metaboextract.shiny.dkfz.de/MetaboExtract/>).
Simulates respiratory virus epidemics using meta-population compartmental models following Fadikar et. al. (2025) <doi:10.1101/2025.05.05.25327021>. MetaRVM implements a stochastic SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) framework with demographic stratification by age, race, and geographic zones. It supports complex epidemiological scenarios including asymptomatic and presymptomatic transmission, hospitalization dynamics, vaccination schedules, and time-varying contact patterns via mixing matrices.
Relatively easy access is provided to 2023 version of the Maddison project data downloaded 2025-08-28. This project collates all the credible data on population and GDP for 169 countries, with some dating back to the year 1 of the current era. One function makes it easy to find the leaders for each year, allowing users to delete countries like OPEC with narrow economies to focus on technology leaders. Another function makes it easy to plot data for only selected countries or years. Another function makes it relatively easy to obtain references to the original sources, which must be cited per the copyright rules of the Maddison Project for different uses of their data.
This package implements methods for post-hoc analysis and visualisation of benchmark experiments, for mlr3 and beyond.
Model selection and averaging for regression, generalized linear models, generalized additive models, graphical models and mixtures, focusing on Bayesian model selection and information criteria (Bayesian information criterion etc.). See Rossell (2025) <doi:10.5281/zenodo.17119597> (see the URL field below for its URL) for a hands-on book describing the methods, examples and suggested citations if you use the package.
This is the very popular mine sweeper game! The game requires you to find out tiles that contain mines through clues from unmasking neighboring tiles. Each tile that does not contain a mine shows the number of mines in its adjacent tiles. If you unmask all tiles that do not contain mines, you win the game; if you unmask any tile that contains a mine, you lose the game. For further game instructions, please run `help(run_game)` and check details. This game runs in X11-compatible devices with `grDevices::x11()`.
Implementation of imputation techniques based on locally stationary wavelet time series forecasting methods from Wilson, R. E. et al. (2021) <doi:10.1007/s11222-021-09998-2>.
This package provides a fast, robust and easy-to-use calculation of multi-class classification evaluation metrics based on confusion matrix.
Similarity plots based on correlation and median absolute deviation (MAD); adjusting colors for heatmaps; aggregate technical replicates; calculate pairwise fold-changes and log fold-changes; compute one- and two-way ANOVA; simplified interface to package limma (Ritchie et al. (2015), <doi:10.1093/nar/gkv007> ) for moderated t-test and one-way ANOVA; Hamming and Levenshtein (edit) distance of strings as well as optimal alignment scores for global (Needleman-Wunsch) and local (Smith-Waterman) alignments with constant gap penalties (Merkl and Waack (2009), ISBN:978-3-527-32594-8).
Encodes several methods for performing Mendelian randomization analyses with summarized data. Similar to the MendelianRandomization package, but with fewer bells and whistles, and less frequent updates. As described in Yavorska (2017) <doi:10.1093/ije/dyx034> and Broadbent (2020) <doi:10.12688/wellcomeopenres.16374.2>.
This package implements the Multi-view Aggregated Two-Sample (MATES) test, a powerful nonparametric method for testing equality of two multivariate distributions. The method constructs multiple graph-based statistics from various perspectives (views) including different distance metrics, graph types (nearest neighbor graphs, minimum spanning trees, and robust nearest neighbor graphs), and weighting schemes. These statistics are then aggregated through a quadratic form to achieve improved statistical power. The package provides both asymptotic closed-form inference and permutation-based testing procedures. For methodological details, see Cai and others (2026+) <doi:10.48550/arXiv.2412.16684>.