Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Conveniently log everything you type into the R console. Logs are are stored as tidy data frames which can then be analyzed using tidyverse style tools.
This package provides supplemental functions for the mixRasch package (Willse, 2014), <https://cran.r-project.org/package=mixRasch/mixRasch.pdf> including a plotting function to compare item parameters for multiple class models and a function that provides average theta values for each class in a mixture model.
Create variable width bar charts i.e. "bar mekko" charts to include important quantitative context. Closely related to mosaic, spine (or spinogram), matrix, submarine, olympic, Mondrian or product plots and tree maps.
We introduce a high-dimensional multi-study robust factor model, which learns latent features and accounts for the heterogeneity among source. It could be used for analyzing heterogeneous RNA sequencing data. More details can be referred to Jiang et al. (2025) <doi:10.48550/arXiv.2506.18478>.
This package provides tools for importing and cleaning Experience Sampling Method (ESM) data collected via the m-Path platform. The goal is to provide with a few utility functions to be able to read and perform some common operations in ESM data collected through the m-Path platform (<https://m-path.io/landing/>). Functions include raw data handling, format standardization, and basic data checks, as well as to calculate the response rate in data from ESM studies.
Developed to deal with multi-locus genotype data, this package is especially designed for those panel which include different type of markers. Basic genetic parameters like allele frequency, genotype frequency, heterozygosity and Hardy-Weinberg test of mixed genetic data can be obtained. In addition, a new test for mutual independence which is compatible for mixed genetic data is developed in this package.
Allows the estimation and downstream statistical analysis of the mitochondrial DNA Heteroplasmy calculated from single-cell datasets <https://github.com/ScialdoneLab/MitoHEAR/tree/master>.
Gene selection based on variance using the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions. Please see the reference: Li X, Fu Y, Wang X, DeMeo DL, Tantisira K, Weiss ST, Qiu W. (2018) <doi:10.1155/2018/6591634>.
Send server-side tracking data from R. The Measurement Protocol version 2 <https://developers.google.com/analytics/devguides/collection/protocol/ga4> allows sending HTTP tracking events from R code.
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes (Dombry, Engelke and Oesting, 2016, <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
This package implements modern resampling and permutation methods for robust statistical inference without restrictive parametric assumptions. Provides bias-corrected and accelerated (BCa) bootstrap (Efron and Tibshirani (1993) <doi:10.1201/9780429246593>), wild bootstrap for heteroscedastic regression (Liu (1988) <doi:10.1214/aos/1176351062>, Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>), block bootstrap for time series (Politis and Romano (1994) <doi:10.1080/01621459.1994.10476870>), and permutation-based multiple testing correction (Westfall and Young (1993) <ISBN:0-471-55761-7>). Methods handle non-normal data, heteroscedasticity, time series correlation, and multiple comparisons.
This package provides a method to impute the missingness in categorical data. Details see the paper <doi:10.4310/SII.2020.v13.n1.a2>.
This package provides a comprehensive tool for almost all existing multiple testing methods for discrete data. The package also provides some novel multiple testing procedures controlling FWER/FDR for discrete data. Given discrete p-values and their domains, the [method].p.adjust function returns adjusted p-values, which can be used to compare with the nominal significant level alpha and make decisions. For users convenience, the functions also provide the output option for printing decision rules.
Computes the third multivariate cumulant of either the raw, centered or standardized data. Computes the main measures of multivariate skewness, together with their bootstrap distributions. Finally, computes the least skewed linear projections of the data.
Analysis of annual average ocean water level time series from long (minimum length 80 years) individual records, providing improved estimates of trend (mean sea level) and associated real-time velocities and accelerations. Improved trend estimates are based on Singular Spectrum Analysis methods. Various gap-filling options are included to accommodate incomplete time series records. The package also contains a forecasting module to consider the implication of user defined quantum of sea level rise between the end of the available historical record and the year 2100. A wide range of screen and pdf plotting options are available in the package.
Generate a stream of pseudo-random numbers generated using the MLS Junk Generator algorithm. Functions exist to generate single pseudo-random numbers as well as a vector, data frame, or matrix of pseudo-random numbers.
Unit testing for Monte Carlo methods, particularly Markov Chain Monte Carlo (MCMC) methods, are implemented as extensions of the testthat package. The MCMC methods check whether the MCMC chain has the correct invariant distribution. They do not check other properties of successful samplers such as whether the chain can reach all points, i.e. whether is recurrent. The tests require the ability to sample from the prior and to run steps of the MCMC chain. The methodology is described in Gandy and Scott (2020) <arXiv:2001.06465>.
Simulate Mediterranean forest functioning and dynamics using cohort-based description of vegetation [De Caceres et al. (2015) <doi:10.1016/j.agrformet.2015.06.012>; De Caceres et al. (2021) <doi:10.1016/j.agrformet.2020.108233>].
Efficiently estimates single- and multilevel latent class models with covariates, allowing for output visualization in all specifications. For more technical details, see Lyrvall et al. (2025) <doi:10.1080/00273171.2025.2473935>.
Evolutionary black box optimization algorithms building on the bbotk package. miesmuschel offers both ready-to-use optimization algorithms, as well as their fundamental building blocks that can be used to manually construct specialized optimization loops. The Mixed Integer Evolution Strategies as described by Li et al. (2013) <doi:10.1162/EVCO_a_00059> can be implemented, as well as the multi-objective optimization algorithms NSGA-II by Deb, Pratap, Agarwal, and Meyarivan (2002) <doi:10.1109/4235.996017>.
Analyzes adverse events in clinical trials using the metalite data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.
Researchers often have expectations about the relations between means of different groups or standardized regression coefficients; using informative hypothesis testing to incorporate these expectations into the analysis through order constraints increases statistical power Vanbrabant and Rosseel (2020) <doi:10.4324/9780429273872-14>. Another valuable tool, the Bayes factor, can evaluate evidence for multiple hypotheses without concerns about multiple testing, and can be used in Bayesian updating Hoijtink, Mulder, van Lissa & Gu (2019) <doi:10.1037/met0000201>. The bain R package enables informative hypothesis testing using the Bayes factor. The mmibain package provides shiny web applications based on bain'. The RepliCrisis() function launches a shiny card game to simulate the evaluation of replication studies while the mmibain() function launches a shiny application to fit Bayesian informative hypotheses evaluation models from bain'.
Magic functions to obtain results from for loops.
The Mass Transportation Distance rank histogram was developed to assess the reliability of scenarios with equal or different probabilities of occurrence <doi:10.1002/we.1872>.