Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Finds the Maximum Likelihood (ML) Estimate of the mean vector and variance-covariance matrix for multivariate normal data with missing values.
An implementation of several machine learning algorithms for multivariate time series. The package includes functions allowing the execution of clustering, classification or outlier detection methods, among others. It also incorporates a collection of multivariate time series datasets which can be used to analyse the performance of new proposed algorithms. Some of these datasets are stored in GitHub data packages ueadata1 to ueadata8'. To access these data packages, run install.packages(c('ueadata1', ueadata2', ueadata3', ueadata4', ueadata5', ueadata6', ueadata7', ueadata8'), repos='<https://anloor7.github.io/drat/>')'. The installation takes a couple of minutes but we strongly encourage the users to do it if they want to have available all datasets of mlmts. Practitioners from a broad variety of fields could benefit from the general framework provided by mlmts'.
Interactions between different biological entities are crucial for the function of biological systems. In such networks, nodes represent biological elements, such as genes, proteins and microbes, and their interactions can be defined by edges, which can be either binary or weighted. The dysregulation of these networks can be associated with different clinical conditions such as diseases and response to treatments. However, such variations often occur locally and do not concern the whole network. To capture local variations of such networks, we propose multiplex network differential analysis (MNDA). MNDA allows to quantify the variations in the local neighborhood of each node (e.g. gene) between the two given clinical states, and to test for statistical significance of such variation. Yousefi et al. (2023) <doi:10.1101/2023.01.22.525058>.
This package performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.
Perform correlation and linear regression test among the numeric fields in a data.frame automatically and make plots using pairs or lattice::parallelplot.
This is a R implementation of "Minimum SNPs" software as described in "Price E.P., Inman-Bamber, J., Thiruvenkataswamy, V., Huygens, F and Giffard, P.M." (2007) <doi:10.1186/1471-2105-8-278> "Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants.".
Read, inspect and process corpus files for quantitative corpus linguistics. Obtain concordances via regular expressions, tokenize texts, and compute frequencies and association measures. Useful for collocation analysis, keywords analysis and variationist studies (comparison of linguistic variants and of linguistic varieties).
An implementation of the additive (Gurevitch et al., 2000 <doi:10.1086/303337>) and multiplicative (Lajeunesse, 2011 <doi:10.1890/11-0423.1>) factorial null models for multiple stressor data (Burgess et al., 2021 <doi:10.1101/2021.07.21.453207>). Effect sizes are able to be calculated for either null model, and subsequently classified into one of four different interaction classifications (e.g., antagonistic or synergistic interactions). Analyses can be conducted on data for single experiments through to large meta-analytical datasets. Minimal input (or statistical knowledge) is required, with any output easily understood. Summary figures are also able to be easily generated.
Computation of an estimation of the long-memory parameters and the long-run covariance matrix using a multivariate model (Lobato (1999) <doi:10.1016/S0304-4076(98)00038-4>; Shimotsu (2007) <doi:10.1016/j.jeconom.2006.01.003>). Two semi-parametric methods are implemented: a Fourier based approach (Shimotsu (2007) <doi:10.1016/j.jeconom.2006.01.003>) and a wavelet based approach (Achard and Gannaz (2016) <doi:10.1111/jtsa.12170>).
This package provides tools for multivariate analyses of morphological data, wrapped in one package, to make the workflow convenient and fast. Statistical and graphical tools provide a comprehensive framework for checking and manipulating input data, statistical analyses, and visualization of results. Several methods are provided for the analysis of raw data, to make the dataset ready for downstream analyses. Integrated statistical methods include hierarchical classification, principal component analysis, principal coordinates analysis, non-metric multidimensional scaling, and multiple discriminant analyses: canonical, stepwise, and classificatory (linear, quadratic, and the non-parametric k nearest neighbours). The philosophy of the package is described in Å lenker et al. 2022.
Implementation of imputation techniques based on locally stationary wavelet time series forecasting methods from Wilson, R. E. et al. (2021) <doi:10.1007/s11222-021-09998-2>.
Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the multivariate MArginal ePIstasis Test ('mvMAPIT') â a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact â thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.
Single imputation based on the Ensemble Conditional Trees (i.e. Cforest algorithm Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007) <doi:10.1186/1471-2105-8-25>).
Implementation of marginalized models for zero-inflated count data. This package provides a tool to implement an estimation algorithm for the marginalized count models, which directly makes inference on the effect of each covariate on the marginal mean of the outcome. The method involves the marginalized zero-inflated Poisson model described in Long et al. (2014) <doi:10.1002/sim.6293>.
Acoustic template detection and monitoring database interface. Create, modify, save, and use templates for detection of animal vocalizations. View, verify, and extract results. Upload a MySQL schema to a existing instance, manage survey metadata, write and read templates and detections locally or to the database.
This package provides a suite of tools for transforming an existing workflow into a self-documenting pipeline with very minimal upfront costs. Segments of the pipeline are specified in much the same way a Make rule is, by declaring an executable recipe (which might be an R script), along with the corresponding targets and dependencies. When the entire pipeline is run through, only those recipes that need to be executed will be. Meanwhile, execution metadata is captured behind the scenes for later inspection.
Collect your data on digital marketing campaigns from Mailchimp using the Windsor.ai API <https://windsor.ai/api-fields/>.
This is a method (MinED) for mining probability distributions using deterministic sampling which is proposed by Joseph, Wang, Gu, Lv, and Tuo (2019) <DOI:10.1080/00401706.2018.1552203>. The MinED samples can be used for approximating the target distribution. They can be generated from a density function that is known only up to a proportionality constant and thus, it might find applications in Bayesian computation. Moreover, the MinED samples are generated with much fewer evaluations of the density function compared to random sampling-based methods such as MCMC and therefore, this method will be especially useful when the unnormalized posterior is expensive or time consuming to evaluate. This research is supported by a U.S. National Science Foundation grant DMS-1712642.
Utilizing model-based clustering (unsupervised) for functional magnetic resonance imaging (fMRI) data. The developed methods (Chen and Maitra (2023) <doi:10.1002/hbm.26425>) include 2D and 3D clustering analyses (for p-values with voxel locations) and segmentation analyses (for p-values alone) for fMRI data where p-values indicate significant level of activation responding to stimulate of interesting. The analyses are mainly identifying active voxel/signal associated with normal brain behaviors. Analysis pipelines (R scripts) utilizing this package (see examples in inst/workflow/') is also implemented with high performance techniques.
Employing artificial intelligence to convert data analysis questions into executable code, explanations, and algorithms. The self-correction feature ensures the generated code is optimized for performance and accuracy. mergen features a user-friendly chat interface, enabling users to interact with the AI agent and extract valuable insights from their data effortlessly.
This package implements an algorithm for computing multiple sparse principal components of a dataset. The method is based on Cory-Wright and Pauphilet "Sparse PCA with Multiple Principal Components" (2022) <doi:10.48550/arXiv.2209.14790>. The algorithm uses an iterative deflation heuristic with a truncated power method applied at each iteration to compute sparse principal components with controlled sparsity.
This is a thin wrapper around the MOEX ISS REST interface, see <https://iss.moex.com>. It allows to quickly fetch price candles for a particular security, obtain its profile information and so on.
Carries out model-based clustering, classification and discriminant analysis using five different models. The models are all based on the generalized hyperbolic distribution. The first model MGHD (Browne and McNicholas (2015) <doi:10.1002/cjs.11246>) is the classical mixture of generalized hyperbolic distributions. The MGHFA (Tortora et al. (2016) <doi:10.1007/s11634-015-0204-z>) is the mixture of generalized hyperbolic factor analyzers for high dimensional data sets. The MSGHD is the mixture of multiple scaled generalized hyperbolic distributions, the cMSGHD is a MSGHD with convex contour plots and the MCGHD', mixture of coalesced generalized hyperbolic distributions is a new more flexible model (Tortora et al. (2019)<doi:10.1007/s00357-019-09319-3>. The paper related to the software can be found at <doi:10.18637/jss.v098.i03>.
The companion package provides all original data sets and functions that are used in the book "Model-Based Clustering and Classification for Data Science" by Charles Bouveyron, Gilles Celeux, T. Brendan Murphy and Adrian E. Raftery (2019, ISBN:9781108644181).